AD-A110 385

SYRACUSE UNIV NY DEPT OF ELECTRICAL AND COMPUTER EN-ETC F/6 20/18 COMPUTER PROGRAM FOR ELECTROMAGNETIC COUPLING TO A CONDUCTING 8-ETC(U) OCT 81 J R MAUTZ, R F HARRINGTON RADC-TR-81-297 NL:

AD-A110 385

SYRACUSE UNIV NY DEPT OF ELECTRICAL AND COMPUTER EN-ETC F/6 20/18 COMPUTER PROGRAM FOR ELECTROMAGNETIC COUPLING TO A CONDUCTING 8-ETC(U) OCT 81 J R MAUTZ, R F HARRINGTON RADC-TR-81-297 NL:

AD-A110 385

SYRACUSE UNIV NY DEPT OF ELECTRICAL AND COMPUTER EN-ETC F/6 20/18 C

RADC-TR-81-297
Phase Report
October 1981

COMPUTER PROGRAM FOR ELECTRO-MAGNETIC COUPLING TO A CONDUCT-ING BODY OF REVOLUTION WITH A HOMOGENEOUS MATERIAL REGION

Syracuse University

Joseph R. Mautz Roger F. Harrington

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UTC FILE COPY

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-81-297 has been reviewed and is approved for publication.

APPROVED:

Roy 7. Stratter
ROY F. STRATTON
Project Engineer

APPROVED:

EDMUND J. WESTCOTT Technical Director

Reliability & Compatibility Division

I Wester H

FOR THE COMMANDER: John P. Kuss

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
RADC-TR-81-297 AD- AIIO 3	N NO. 3. RECIPIENT'S CATALOG NUMBER			
RADC-TR-81-29/ A. YITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED			
COMPUTER PROGRAM FOR ELECTROMAGNETIC COUPLINTO A CONDUCTING BODY OF REVOLUTION WITH A				
HOMOGENEOUS MATERIAL REGION	6. PERFORMING ORG. REPORT NUMBER N/A			
7. Authom(e) Joseph R. Mautz	8. CONTRACT OR GRANT NUMBER(s)			
Roger F. Harrington	F306C2-79-C-0011			
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS			
Syracuse University				
Dept. of Electrical and Computer Engineering	62702F 23380317			
Syracuse NY 13210				
1. CONTROLLING OFFICE NAME AND ADDRESS	October 1981			
Rome Air Development Center (RBCT)	13. NUMBER OF PAGES			
Griffiss AFB NY 13441	76			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Off	fice) 15. SECURITY CLASS. (of this report)			
Same	UNCLASSIFIED			
	154. DECLASSIFICATION, DOWNGRADING SCHEDULE			
	N/A			
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distribution un	alimited.			
representation parties relations, and relations and				
17 DISTRIBUTION STATEMENT (of the abstract, entered in Block 20, if different	ent from Report)			
Same				
18. SUPPLEMENTARY NOTES				
RADC Project Engineer: Roy F. Stratton (RBC	CT)			
19. KEY WORDS (Continue on reverse side if necessary and identify by block no	umber)			
	tromagnetic Coupling			
	geneous Material Region			
	Method of Moments			
Conductor Plus Dielectric	·			
ABSTRACT (Continue on reverse side if necessary and identify by block nu	mber)			
A computer program is given to calculate ele				
perfectly conducting body of revolution with a loss-free homogeneous				
material region. The material region is also a body of revolution. It				
is bounded by an aperture and part of the surface of the conducting body.				
The maximum dimensions of the conducting body and its associated material				
region are of the order of a few wavelengths. The electromagnetic excita-				
tion is an obliquely incident 9 polarized plane wave.				
DD FORM 1473 EDITION OF I NOV 65 IS OBSOLETE INCLASSIFEED 1/				
UNCLASSIFIED				
SECURITY	Y CLASSIFICATION OF THIS PAGE (When Data Entere			

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Application of the equivalence principle and subsequent enforcement of the boundary conditions for tangential fields give a set of integral equations. These equations are then solved by means of the method of moments. The computer program calculates the electric current induced on the surface of the conducting body and the equivalent electric and magnetic currents in the aperture. These currents radiate the field scattered by the conducting body and its associated material region. They also radiate the field transmitted through the aperture into the material region. The computer program is described and listed along with sample input and output data.

CONTENTS

	P	age
I.	INTRODUCTION	1
II.	THE SUBROUTINE YZA	2
III.	THE FUNCTION BLOG AND THE SUBROUTINES PLANE, DECOMP, AND SOLVE	29
IV.	THE SUBROUTINE PRNT	33
V.	THE MAIN PROGRAM	36
REFERI	NCES	68
	Accession For	\neg
	WITE CDANT	-1

I. INTRODUCTION

The computer program presented here calculates the Fourier coefficients [1, Eqs. (87)-(89)] of the electric and magnetic currents on the object shown in [1, Fig. 1] excited by an obliquely incident θ -polarized plane wave. The I's and V's in [1, Eqs. (87)-(89)] are the elements [1, Eq. (68a)] of \tilde{X}_n^{θ} obtained by solving [1, Eq. (65a)] for non-negative values of n with \tilde{B}_n^{θ} given by [1, Eq. (101)].

The computer program consists of a main program and the subprograms YZA, BLOG, PLANE, DECOMP, SOLVE, and PRNT. The subroutine YZA calculates the matrix elements [1, Eqs. (35) and (36)] which appear in expression [1, Eq. (33)] for the moment matrix T_n . T_n is needed in [1, Eq. (65a)]. The subroutine YZA calls the function BLOG. The subroutine PLANE calculates V_{ni}^{t0} , $-V_{ni}^{t0}$, $-V_{ni}^{t0}$, and V_{ni}^{t0} , which, according to [1, Eq. (103)], determine \tilde{B}_n^{t0} of [1, Eq. (101)]. The subroutine DECOMP decomposes T_n into the product of a lower triangular matrix with an upper triangular matrix. The subroutine SOLVE uses these triangular matrices to calculate the solution \tilde{X}_n^{t0} to [1, Eq. (65a)]. The subroutine PRNT uses the elements of \tilde{X}_n^{t0} of [1, Eq. (68a)] to calculate the Fourier coefficients [1, Eqs. (87)-(89)]. The subroutine PRNT also prints out [1, Eqs. (87)-(89)].

The main program calls the subroutines YZA, PLANE, DECOMP, SOLVE, and PRNT in order to calculate and print out [1, Eqs. (87)-(89)]. The main program is rather long because it has to rearrange the Z's and Y's calculated by the subroutine YZA and the V's calculated by the subroutine PLANE. Unfortunately, the Z's and Y's come out of the subroutine YZA

arranged not as in [1, Eqs. (35) and (36)] but as on the right-hand sides of [1, Eqs. (47) and (50)] for consecutive values of i' and j'. Likewise, the V's exit the subroutine PLANE arranged not as on the left-hand sides of [1, Eq. (103)] but as on the right-hand sides of [1, Eq. (103)] for consecutive values of i'. The main program has to rearrange these Z's, Y's, and V's so as to realize the transition from $\frac{W^{r\pm}}{ni}$ and $\frac{J^{s\pm}}{nj}$, to $\frac{W^{p\pm}}{ni}$ and $\frac{J^{q\pm}}{nj}$.

II. THE SUBROUTINE YZA

The subroutine YZA(M1, M2, NP, NPHI, NT, IN, RH, ZH, X, A, XT, AT, Y, Z) calculates the elements of matrices Y_n^{\dagger} and Z_n^{\dagger} defined by

$$Y_{n}^{\dagger} = \begin{bmatrix} Y_{n}^{\dagger} & Y_{n}^{\dagger} & Y_{n}^{\dagger} \\ \vdots & \vdots & \vdots \\ Y_{n}^{\dagger} & Y_{n}^{\dagger} & Y_{n}^{\dagger} & Y_{n}^{\dagger} \end{bmatrix}, n=M1, M1+1, \dots M2$$
 (1)

$$Z_{n} = \begin{bmatrix} z_{n}^{tt} & z_{n}^{t\phi} \\ \\ z_{n}^{t} & z_{n}^{\phi\phi} \end{bmatrix}, n=M1, M1+1, \dots, M2$$
 (2)

where the ijth elements of the submatrices on the right-hand sides of (1) and (2) are given by

$$Y_{nij}^{rs} = -\langle W_{ni}^{r}, H(J_{nj}^{s}, 0) \rangle$$

$$Z_{nij}^{rs} = -\langle W_{ni}^{r}, \frac{1}{\eta} E(J_{nj}^{s}, 0) \rangle$$

$$(3)$$

$$r = t, \phi$$

$$s = t, \phi$$

$$(4)$$

Ţ-,

The quantities on the right-hand sides of (3) and (4) are those on the right-hand sides of [1, Eqs. (50) and (47)] with the \pm notation omitted and with i' and j' replaced by i and j. The < > notation in (3) and (4) denotes the same symmetric product as in [1, Eqs. (50) and (47)]. The \pm notation in [1] serves to distinguish the surface (S⁺ + A) from the surface (S⁻ + A). The \pm notation is not needed in (3) and (4) because the subroutine YZA deals with only one surface of revolution at a time. Later on in Section V, the main program calls YZA twice, once for (S⁺ + A) and once for (S⁻ + A). For a particular value of n, Y' of (1) is stored by columns in Y and Z of (2) is stored by columns in Z. Y' is placed immediately after Y' in Y. Similarly, Z of 1010ws Z of 1

The input arguments of YZA have the same meaning as those of the subroutine YZ presented in [2, pages 65-79]. In comparison with YZA, the subroutine YZ of [2] puts $\frac{Y}{n}$ in Y and $\frac{Z}{n}$ of (2) in Z where

$$Y_{n} = \begin{bmatrix} Y_{n}^{tt} & Y_{n}^{t\phi} \\ Y_{n}^{t} & Y_{n}^{\phi\phi} \\ Y_{n}^{\phi t} & Y_{n}^{\phi\phi} \end{bmatrix}$$
 (5)

The ijth elements of the submatrices on the right-hand side of (5) are given by

$$Y_{nij}^{rs} = -\langle W_{ni}^{r}, \underline{n} \times \underline{H}(\underline{J}_{nj}^{s}, 0 \rangle$$

$$\begin{cases} r = t, \phi \\ s = t, \phi \end{cases}$$
(6)

where [2, Eq. (4)]

$$\underline{\mathbf{n}} = \underline{\mathbf{u}}_{\phi} \times \underline{\mathbf{u}}_{\mathsf{t}} \tag{7}$$

As defined by (7), \underline{n} is a unit vector normal to the surface of revolution.

Although we have been omitting the vector designation from vectors inside the symmetric product, we decided to designate \underline{n} and \underline{H} as vectors in (6) to clearly indicate that the vector product $\underline{n} \times \underline{H}$ is intended there.

YZ of [2] allows for the Ampere's law contribution to the magnetic field \underline{H} in (6). The Ampere's law contribution to the magnetic field is the contribution due to the value of the electric current at the field point. The Ampere's law contribution in the subroutine YZ of [2] is controlled by means of the input argument IN of YZ of [2]. The action of IN is described in [2, page 39] under the assumptions that

- 1) n is given by (7)
- 2) n points outward from the surface of revolution.

However, the action of IN can be described without recourse to assumption 2) in the following manner.

In (8), \underline{n} is visualized as piercing the sheet of electric current which produces the magnetic field. Apparently, assumption 2) for \underline{n} can be eliminated from [2] by replacing the description [2, page 39] of the action of the input argument IN of YZ of [2] by (8).

Presumably, the magnetic field \underline{H} in (3) contains no Ampere's law contribution because the magnetic field \underline{H}^{\pm} in [1, Eq. (50)] had no Ampere's law contribution. However, we decided to allow for the Ampere's

law contribution associated with \underline{H} in (3) in order to enhance the usefulness of YZA. This Ampere's law contribution is controlled by means of the input argument IN of YZA. The action of IN is described by (8) where it is assumed that \underline{n} is given by (7). We do not require \underline{n} to point outward in (8).

Most of the statements in YZA are exactly the same as those in YZ of [2]. In the remaining part of this section, the differences between YZA and YZ of [2] are pointed out and explained and then YZA is listed. Unless stated otherwise, all line numbers and statement numbers cited henceforth in this section refer to the listing of YZA.

In line 4, more space is allotted to Y and Z than in YZ of [2]. Nevertheless, the minimum allocations given in [2, pages 65-66] apply to YZA. Line 9 in YZ of [2] has no counterpart in YZA because UG and UH are not used in YZA. On the other hand, line 17 has no counterpart in YZ of [2]. Line 17 enables YZA to calculate the moment matrix for the E-field solution [3] for the two conducting bodies in [1, Fig. 13]. This E-field solution was obtained by connecting the generating curves ABC and DEF in [1, Fig. 13] to obtain the single curve ABCDEF and then deleting all matrix elements associated with the connecting line CD. Line 17 sets $k\rho = 1$ at the midpoint of the connecting line CD. Here, k is the propagation constant and ρ is the distance from the z axis. If line 17 were absent, this $k\rho$ would be zero and divisions by zero would occur. The value 1 assigned to $k\rho$ in line 17 is not critical because, as stated earlier, all matrix elements associated with the connecting line CD are deleted. Line 17 also enables YZA to calculate the moment matrix for

an H-field solution for the two conducting bodies in [1, Fig. 13]. However, this H-field solution, being a solution to [2, Eq. (1)] without the $\underline{\mathbf{n}}^{\times}$, would fail according to the discussion in the third from the last paragraph in [1, Section III]. The H-field solution shown in [1, Fig. 15] was obtained by using the subroutine YZ of [2] modified by setting $k\rho = 1$ at the midpoint of the connecting line CD in [1, Fig. 13].

The major difference between YZ of [2] and YZA lies in the fact that there is an $\underline{n} \times \underline{n}$ in (6) for Y_{nij}^{rs} calculated by YZ of [2] but not in (3) for Y_{nij}^{rs} calculated by YZA. Because \underline{w}_{ni}^{r} in (3) is a tangential vector, (3) can be written as

$$Y_{nij}^{rs} = -\langle \underline{n} \times \underline{W}_{ni}^{r}, \underline{n} \times \underline{H}(\underline{J}_{nj}^{s}, 0) \rangle \begin{cases} r = t, \phi \\ s = t, \phi \end{cases}$$
 (9)

In view of (7) and the assumptions that $\frac{W^t}{ni}$ has only a t component and $\frac{W^\phi}{ni}$ has only a ϕ component, (9) becomes

$$Y_{nij}^{ts} = -\hat{Y}_{nij}^{\phi s}$$

$$y_{nij}^{\phi s} = \hat{Y}_{nij}^{ts}$$

$$y_{nij}^{ts} = \hat{Y}_{nij}^{ts}$$
(10a)

where

$$\hat{Y}_{nij}^{rs} = -\langle \hat{\underline{w}}_{ni}^{r}, \underline{n} \times \underline{H}(\underline{J}_{nj}^{s}, 0) \rangle \begin{cases} r = t, \phi \\ s = t, \phi \end{cases}$$
(11)

where

$$\frac{\hat{\mathbf{w}}_{\mathbf{n}i}^{\mathsf{t}} = \underline{\mathbf{u}}_{\mathsf{t}} \left(\underline{\mathbf{w}}_{\mathbf{n}i}^{\mathsf{\phi}} \cdot \underline{\mathbf{u}}_{\mathsf{\phi}} \right) \tag{12a}$$

$$\frac{\hat{W}_{ni}^{\phi} = \underline{u}_{\phi} (\underline{W}_{ni}^{t} \cdot \underline{u}_{t})$$
 (12b)

According to (10)-(12), Yits is the negative of You modified from (6) and Yits is Yts modified from (6). The expression "modified from (6)" means (6) with the t and ϕ components of $\frac{W}{n_1}$ interchanged.

Now, the matrix elements (6) are given by [2, Eq. (12)] and it is evident from [2, Eq. (9)] that

$$\frac{\mathbf{w}^{\mathsf{t}}_{\mathsf{n}i} \cdot \mathbf{u}_{\mathsf{t}}}{\mathbf{v}} = \frac{\mathbf{u}_{\mathsf{i}}(\mathsf{t})}{\rho} e^{-\mathsf{j} \mathsf{n} \phi} \tag{13a}$$

$$\underline{\mathbf{w}}_{\mathbf{n}\mathbf{i}}^{\phi} \cdot \underline{\mathbf{u}}_{\phi} = \frac{\mathbf{P}_{\mathbf{i}}(\mathbf{t})}{\rho_{\mathbf{i}}} e^{-\mathbf{j}\mathbf{n}\phi}$$
 (13b)

Hence, (10) becomes

$$Y_{nij}^{tt} = -\hat{Y}_{nij}^{\phi t}$$
 (14a)

$$Y_{nij}^{,\phi t} = \hat{Y}_{nij}^{tt}$$
 (14b)

$$Y_{nij}^{\dagger t \phi} = -\hat{Y}_{nij}^{\phi \phi}$$
 (14c)

$$Y_{nij}^{,\phi\phi} = \hat{Y}_{nij}^{t\phi}$$
 (14d)

where

$$\hat{Y}_{nij}^{\phi t} = Y_{nij}^{\phi t} \text{ of [2, Eq. (12b)] with } \frac{P_i(t)}{\rho_i} \text{ replaced by } \frac{T_i(t)}{\rho}$$
 (15a)

$$\hat{Y}_{nij}^{tt} = Y_{nij}^{tt} \text{ of [2, Eq. (12a)] with } \frac{T_i(t)}{\rho} \text{ replaced by } \frac{P_i(t)}{\rho}$$
 (15b)

$$\hat{Y}_{nij}^{\varphi\varphi} = Y_{nij}^{\varphi\varphi} \text{ of [2, Eq. (12d)] with } \frac{P_i(t)}{\rho_i} \text{ replaced by } \frac{T_i(t)}{\rho_i}$$
 (15c)

$$\hat{Y}_{nij}^{t\phi} = Y_{nij}^{t\phi} \text{ of [2, Eq. (12c)] with } \frac{T_i(t)}{\rho} \text{ replaced by } \frac{P_i(t)}{\rho_i}$$
 (15d)

Obviously, the interchange of functions in (15) must be accompanied by

appropriate changes in the limits of integration with respect to t in [2, Eq. (12)]. Also, because the magnetic fields in [2, Eq. (12)] as it stands are evaluated on the side of the electric current sheet where the tail of $\underline{\mathbf{n}}$ is, the Ampere's law contributions to [2, Eq. (12)] should be multiplied by the input argument IN of YZA. These contributions are the single integrals with respect to t in [2, Eq. (12)].

Consequently, the Ampere's law contributions to (14) are given by

$$\bar{Y}_{nij}^{,\phi t} = \frac{\pi(IN)}{\rho_i} \int_{t_i}^{t_{i+1}} P_i(t) T_j(t) dt$$
(16a)

$$\bar{Y}_{nij}^{,t\phi} = -\frac{\pi(IN)}{\rho_{j}} \int_{t_{j}}^{t_{j}+1} T_{i}(t) P_{j}(t) dt$$
(16b)

where the horizontal bar on the left-hand sides of (16) denotes Ampere's law contribution. If the qth interval is defined to be (t_q^-, t_{q+1}^-) , then the contributions to (16) due to the integrations over the qth interval are given by

$$\dot{Y}_{nqj}^{,\phi t} = \frac{\pi(IN)}{\rho_{q}} \int_{t_{q}}^{t_{q+1}} P_{q}(t) T_{j}(t) dt \qquad j \neq 0$$

$$j = q-1, q$$

$$j \neq 0$$

$$j \neq NP - 1$$
(17a)

$$\dot{Y}_{niq}^{t t \varphi} = -\frac{\pi(IN)}{\rho_{q}} \int_{t_{q}}^{t_{q}+1} T_{i}(t) P_{q}(t) dt \qquad i \neq 0$$

$$i = q-1, q$$

$$i \neq 0$$

$$i \neq NP - 1$$
(17b)

where NP is one of the input arguments of YZA. The dot on the left-hand sides of (17) denotes Ampere's law contribution due to integration over the qth interval. Thanks to the definitions [2, Eqs. (5) and (6)], (17) reduces to

$$\dot{\mathbf{Y}}_{\mathbf{n}\mathbf{q}\mathbf{j}}^{\dagger} = \frac{\Delta_{\mathbf{q}}^{\pi}(\mathbf{I}\mathbf{N})}{2\rho_{\mathbf{q}}} \qquad \begin{cases} \mathbf{j} = \mathbf{q}-1, \ \mathbf{q} \\ \mathbf{j} \neq 0 \\ \mathbf{j} \neq \mathbf{N}\mathbf{P} - 1 \end{cases}$$
 (18a)

$$\dot{Y}_{niq}^{i,t\varphi} = -\frac{\Delta_{q}^{\pi}(IN)}{2\rho_{q}}$$

$$\begin{cases}
i = q-1, q \\
i \neq 0 \\
i \neq NP - 1
\end{cases}$$
(18b)

where

$$\Delta_{\mathbf{q}} = \mathbf{t}_{\mathbf{q}+1}^{-} - \mathbf{t}_{\mathbf{q}}^{-} \tag{19}$$

Expressions (18) are the Ampere's law contributions to the matrix elements Y_{nij}^{rs} of (14) due to the integrations over the qth interval.

The contributions to (14) referred to in this paragraph and the next paragraph are exclusive of the Ampere's law contributions. If the pqth region is the region for which

$$t_p^- \le t \le t_{p+1}^-$$

$$t_q^- \le t' \le t_{q+1}^-$$

then the contributions to (14) due to the integrations over the pqth region are given by expressions similar to [2, Eq. (18)]. If the generating curve of the surface of revolution is assumed to be a series of straight line segments connecting the points t_1^- , t_2^- ,... t_{NP}^- and if the integrations with respect to t are approximated by sampling the integrands at $t = t_p$ and multiplying by Δ_p , then the contributions to (14) due to the integrations over the pqth region reduce to

$$Y_{nij}^{*,tt} = -\frac{1}{2} \text{ (right-hand side of [2, Eq. (22b)])}$$
 (20a)

$$\mathring{Y}_{niq}^{\dagger, \dagger \varphi} = -\frac{1}{2}$$
 (right-hand side of [2, Eq. (22d)] without the δ_{pq} term) (20c)

$$\dot{Y}_{npq}^{\dagger,\phi\phi} = 2 \text{ (right-hand side of [2, Eq. (22c)])}$$
 (20d)

The asterisk on the left-hand sides of (20) denotes contribution due to integration over the pqth region. The ranges of values of i and j in (20) are given by

$$i = p-1, p$$

$$i \neq 0$$

$$i = NP-1$$
(21a)

The factors $\frac{1}{2}$ and 2 in (20) are due to sampling the integrands at $t = t_p$. When $t = t_p$, the functions $\frac{P_i(t)}{\rho_i}$ and $\frac{T_i(t)}{\rho}$ which are being interchanged in (15) reduce to

$$\frac{P_{\mathbf{i}}(t_{\mathbf{p}})}{\rho_{\mathbf{i}}} = \begin{cases} \frac{1}{\rho_{\mathbf{p}}}, & \mathbf{i} = \mathbf{p} \\ 0, & \mathbf{i} \neq \mathbf{p} \end{cases}$$
 (22)

$$\frac{T_{1}(t_{p})}{\rho} = \begin{cases} \frac{1}{2\rho_{p}}, & i = p-1, p \\ 0, & \text{otherwise} \end{cases}$$
 (23)

Since [2, Eq. (22)] is equal to [2, Eq. (24)], (20) can be rewritten as

$$\dot{Y}_{n,p-1,q}^{\dagger tt} = -\frac{1}{2} (UC + UD), p \neq 0, q \neq NP-1$$
 (24c)

$$Y_{npq}^{*,\phi t} = 2 \text{ (UB)}, q \neq NP-1$$
 (24f)

$$Y_{n,p-1,q}^{*,t\phi} = -\frac{1}{2} \text{ (UF)} , p \neq 0$$
 (24g)

$$\overset{*}{Y}_{npq}^{\dagger t\varphi} = -\frac{1}{2} \text{ (UF)} , p \neq NP-1$$
 (24h)

where

UA = right-hand side of
$$[2, Eq. (24a)]$$
 for $j = q-1$ (25a)

$$UB = right-hand side of [2, Eq. (24a)] for j = q$$
 (25b)

$$UC-UD = right-hand side of [2, Eq. (24b)] for j = q-1$$
 (25c)

UC+UD = right-hand side of
$$[2, Eq. (24b)]$$
 for $j = q$ (25d)

UE = right-hand side of
$$[2, Eq. (24c)]$$
 (25e)

UF = right-hand side of [2, Eq. (24d)] without the
$$\delta_{pq}$$
 term (25f)

The notation UA, UB,...UF on the left-hand sides of (25) is the same as the notation used in YZ of [2]. Expressions (24) are the contributions to the matrix elements Y_{nij} of (14) due to the integrations over the pqth region. No Ampere's law contributions are included in (24). The Ampere's law contributions are given by (18).

The Ampere's law contributions in (18) are different from those in [2] which consist of [2, Eq. (23)] and the δ_{pq} term in [2, Eq. (24d)]. Hence, the statements which realize the Ampere's law contributions in YZA are different from those in YZ of [2]. Lines 50-51, 74-75, 86-88, 93-99, and 424-429 of YZ of [2] obtain the Ampere's law contributions. Line 50 of YZA puts $\pi(IN)$ of (18) in PN1. Line 73 puts the right-hand side of (18a) in P1.

The index JQ of DO loop 15 obtains the subscript q which appears in (18a) and (24). The index IP of DO loop 16 obtains the subscript p which appears in (24). The purpose of the statement IF(IP.NE.JQ) in lines 121, 270, and 424 of YZ of [2] is to check if the IPth interval coincides with the JQth interval. If the IPth and JQth intervals coincide, then the numerical evaluation of the integrals $G_{m\alpha}$ in [2, Section III] is affected and Ampere's law contributions are taken into account. However, YZ of [2] was not designed to accommodate a generating curve which closes upon itself.

The subroutine YZA allows for a generating curve which closes upon itself. Such a curve is treated in the following manner. A triangle function whose peak is at the first data point is needed and is obtained by overlapping the last interval of the generating curve with the first

interval as in [1, Fig. 5]. This triangle function is called $T_{NP-2}(t)$. In addition to $T_{NP-2}(t)$, the process of overlapping obtains the pulse function $P_{NP-1}(t)$. $P_{NP-1}(t)$ is not wanted because it is identical to $P_1(t)$. The effect of $P_{NP-1}(t)$ can be eliminated by discarding all matrix elements (3) and (4) for which either $\frac{W^r}{ni}$ or $\frac{J^s}{nj}$ contain $P_{NP-1}(t)$. These elements must be discarded after exit from YZA, because YZA does not contain any logic for discarding matrix elements.

Unfortunately, (18) was derived for a generating curve which does not overlap on itself. If the last interval of the generating curve overlaps the first interval, the quantities on the right-hand side of (18) are still correct but more values of i and 1 are needed in (18) when q = 1 and q = NP-1 to allow for the overlapping so as to account for all Ampere's law contributions to the matrix elements (3). It will be shown that all Ampere's law contributions can be accounted for by defining ZIP to be the electrical distance from the center of the JQth interval to the center of the IPth interval and using the statement IF(ZIP.NE.O.) instead of the statement IF(IP.NE.JQ). The statement IF(ZIP.NE.O.) appears in lines 110, 259, and 408. If the generating curve does not overlap on itself, the action of the statement IF(ZIP.NE.O.) is the same as the action of the statement IF(IP.NE.JQ) and all Ampere's law contributions are accounted for. However, if the last interval of the generating curve overlaps the first interval, then it remains to be shown that (ZIP = 0.) obtains all Ampere's law contributions.

If the last interval of the generating curve overlaps the first interval, then ZIP is zero not only for

$$IP = JQ = m$$
, $m=1,2,...NP-1$ Case 1

but also for

$$IP = 1$$

$$JQ = NP-1$$
Case 2

and for

$$IP = NP-1$$

$$JQ = 1$$
Case 3

In what is to follow, the matrix elements Y_{nij}^{rs} of (3) are viewed as interactions between testing functions and expansion functions. The combination of Cases 1, 2, and 3 will give all Ampere's law contributions if it covers all possible interactions between parts of testing functions on the mth interval and parts of expansion functions on the mth interval for $m = 1, 2, \dots NP-2$.

With regard to the Ampere's law contributions (18), the last statement is more general than necessary because not all interactions between testing functions and expansion functions are involved in (18). For example, the interactions Y_{n1j}^{tt} between t directed testing functions and t directed expansion functions are not involved in (18) and neither are the interactions $Y_{n1j}^{t\phi}$ between ϕ directed testing functions and ϕ directed expansion functions. However, the matrix elements Y_{n1j}^{tt} and $Y_{n1j}^{\phi\phi}$ of (6) calculated by YZ of [2] do have Ampere's law contributions. It would be useful to know that YZ of [2] can be modified to allow for a closed generating curve by using the same technique as in YZA. This technique consists of overlapping the last interval of the generating curve with the first, replacing the statement IF(IP.NE.JQ) by the statement IF(ZIP.NE.O.),

and deleting the matrix elements associated with $P_{\mathrm{NP-1}}(t)$ after exit from the subroutine.

It is evident that the portion of Case 1 for which

$$IP = JQ = m, m = 2...NP-2$$

covers all possible interactions between parts of testing functions on the mth interval and expansion functions on the mth interval for m = 2,3,...NP-2. However, clarification is needed with regard to the first interval because, due to the overlapping, the first interval is sometimes disguised as the (NP-1)th interval.

All possible interactions between parts of testing functions on the first interval and parts of expansion functions on the first interval are listed as

1)
$$T_{NP-2}^{b}(t)$$
 with $T_{NP-2}^{b}(t)$

2)
$$T_1^a(t)$$
 with $T_{NP-2}^b(t)$

3)
$$P_1(t)$$
 with $T_{NP-2}^b(t)$

4)
$$T_{NP-2}^{b}(t)$$
 with $T_{1}^{a}(t)$

5)
$$T_1^a(t)$$
 with $T_1^a(t)$

6)
$$P_1(t)$$
 with $T_1^a(t)$

7)
$$T_{NP-2}^{b}(t)$$
 with $P_1(t)$

8)
$$T_1^a(t)$$
 with $P_1(t)$

9)
$$P_1(t)$$
 with $P_1(t)$

In each of the foregoing 9 interactions, the first function is the part of the testing function and the second function is the part of the expansion function. $T_{NP-2}^b(t)$ is the second part of the (NP-2)th triangle

1

function, the downward sloping part. $T_1^a(t)$ is the first part of the first triangle function, the upward sloping part.

The interactions covered by Cases 2 and 3 and the parts of Case 1 for which IP = JQ = 1 and IP = JQ = NP-1 are listed as

2)
$$T_1^a(t)$$
 with $T_{NP-2}^b(t)$

3)
$$P_1(t)$$
 with $T_{NP-2}^b(t)$ IP = 1

10)
$$T_1^a(t)$$
 with $P_{NP-1}(t)$

11)
$$P_1(t)$$
 with $P_{NP-1}(t)$

4)
$$T_{NP-2}^b(t)$$
 with $T_1^a(t)$

12)
$$P_{NP-1}(t)$$
 with $T_1^a(t)$

7)
$$T_{NP-2}^{b}(t)$$
 with $P_1(t)$

13)
$$P_{NP-1}(t)$$
 with $P_1(t)$

5)
$$T_1^a(t)$$
 with $T_1^a(t)$

6)
$$P_1(t)$$
 with $T_1^a(t)$

8)
$$T_1^a(t)$$
 with $P_1(t)$

9)
$$P_1(t)$$
 with $P_1(t)$

1)
$$T_{NP-2}^b(t)$$
 with $T_{NP-2}^b(t)$

14)
$$P_{NP-1}(t)$$
 with $T_{NP-2}^{b}(t)$

14)
$$P_{NP-1}(t)$$
 with $T_{NP-2}^{b}(t)$

15) $T_{NP-2}^{b}(t)$ with $P_{NP-1}(t)$

IP = JQ = NP-1

16)
$$P_{NP-1}(t)$$
 with $P_{NP-1}(t)$

$$JQ = NP-1$$

Case 2

Case 3

$$JQ = 1$$

$$IP = JQ = 1$$

Part of Case 1

Part of Case 1

The preceding 16 interactions were numbered so as to facilitate comparison with the 9 interactions in the last paragraph.

Of the 16 interactions in the last paragraph, numbers 1 to 9 are the interactions in the second from the last paragraph and numbers 10 to 16 are to be discarded because they contain $P_{NP-1}(t)$. Drawing an equivalence between the interactions in the last paragraph and the interactions in the second from the last paragraph, we conclude that the combination of Cases 1, 2. and 3 covers all possible interactions between parts of testing functions on the mth interval and parts of expansion functions on the mth interval for $m = 1, 2, \ldots$ NP-2. Hence, (ZIP = 0.) obtains all Ampere's law contributions when the last interval on the generating curve overlaps the first interval. If such overlapping is intended, then the input arguments RH and ZH of YZA must satisfy

$$RH(NP-1) = RH(1)$$
 $RH(NP) = RH(2)$
 $ZH(NP-1) = ZH(1)$
 $ZH(NP) = ZH(2)$
(26)

exactly. Otherwise, the computed values of ZIP will not be zero in Cases 2 and 3.

With the intention of showing that YZA implements (24), we list in Table 1 some variables in YZA whose values are different from those in YZ of [2].

Table 1. Comparison of some variables in YZA with those in YZ of [2].

Line in YZA	Variable in YZA	Expression in terms of variables in YZ of [2]	
379	W1	2.*W1	
380	W2	2.*W2	
385	H1C	5*H1C	
387	нзс	2.*H3C	
388	H2C	2.*H2C	
389	нзс	2.*H3C	
390	W3	5*W3	
391	W4	5*W4	
392	W5	5*W5	
405	UC	2.*UC	
406	UB	2.*UB	
407	UF	5*UF	
411	UA	2.*UA	
412	UB	2.*UB	
415	uc	5*(UC-UD)	
416	UD	5*(UC+UD)	
417	UE	2.*UE	

In Table 1, the variable in the second column is defined by the statement in YZA whose line number is given in the first column. The expression in the third column is the value of the variable in the second column. The values of the variables appearing in the third column are the values which exist in YZ just after the counterpart to the variable in the second column has been defined in YZ. For example, the value of Wl in the first line of the third column is defined in line 391 of YZ of [2]. As an exception, the

value of UD intended in the third from the last line of the third column is that defined by line 433 of YZ of [2]. Table 1 was constructed under the assumption that no Ampere's law contributions come into play. This amounts to assuming that lines 425-429 of YZ of [2] are not executed and that lines 409-410 of YZA are not executed. The Ampere's law contributions (18) will be considered later.

The last 6 variables in the second column of Table 1 are used to construct the matrix elements Y_{nij}^{rs} of (3). The statements in YZA which perform this task are listed in Table 2.

Table 2. Construction of matrix elements Y'rs

Line in YZA	Statement in YZA	Matrix element
461,476	Y(K1) = Y(K1) + UC	y'tt n,p-1,q-1
466,483	Y(K2) = Y(K2) + UC	y,tt n,p,q-1
448,477	Y(K3) = Y(K3) + UD	y,tt n,p-1,q
453,484	Y(K4) = UD	y,tt npq
458,471	Y(K5) = Y(K5) + UA	γ,Φt np,q-1
445,472	Y(K6) = UB	Y, ¢t npq
449,462,478	Y(K7) = Y(K7) + UF	Υ <mark>,tφ</mark> n,p-1,q
454,467,485	Y(K8) = UF	γ,tφ npq
489	Y(K9) = UE	Y, OP npq

In Table 2, the variable being modified by the statement in the second column represents the matrix element in the third column. For example,

Y(K1) which appears in the first line of the second column of Table 2 is the storage location of the matrix element y_n^{tt} . The subscripts n,p, and q appearing in the third column of Table 2 are given in terms of variables in YZA by

$$n = M + M1-1$$

p = IP

q = JQ

Here, M is the index of DO loop 31, M1 is one of the input arguments of YZA, IP is the index of DO loop 16, and JQ is the index of DO loop 15. In view of the fact that the variables UA, UB, UC, UD, UE, and UF appearing in the second column of Table 2 are given by the last 6 entries of the third column of Table 1, it is now evident that YZA implements (24).

From (18), the correct values of the Ampere's law contributions are ${}^{\dot{\pm}}(\Delta_q\pi(\mathrm{IN}))/(2\rho_q)$. In the paragraph which follows (25) we established that line 73 stores $(\Delta_q\pi(\mathrm{IN}))/(2\rho_q)$ in P1. In the paragraph prior to the introduction of Table 1, we concluded that the Ampere's law contributions come into play whenever ZIP = 0. Accordingly, lines 409-410 are executed when ZIP = 0. The effect of line 409 is to add P1 to the values of UA and UB calculated by lines 411 and 412. Line 410 subtracts P1 from the value of UF calculated by line 407. The previously mentioned variables UA, UB, and UF appear in the second column of Table 1 and were transferred to the second column of Table 2. It is now evident from Table 2 that execution of lines 409-410 adds P1 to $Y_{np,q-1}^{\dagger}$ and Y_{npq}^{\dagger} and subtracts P1 from $Y_{np-1,q}^{\dagger}$ and Y_{npq}^{\dagger} . Hence, YZ takes proper account of the Ampere's law contributions.

```
001 C
         LISTING OF THE SUBROUTINE YZA
002C
         THE SUBROUTINE YZA CALLS THE FUNCTION BLOG
003
         SUBROUTINE YZA(MI.M2.NP.NPHI.NT.IN.RH.ZH.X.A.XT.AT.Y.Z)
0 04
         COMPLEX Y{2209}.Z{2209}.U.U1.U2.U3.U4.U5.U6.H1A.H2A.H3A.GA(48)
005
         COMPLEX G8(48).GC(48).GD(48).GE(48).H18.H28.H38.H1C.H2C.H3C.H4A
006
         COMPLEX H5A.H6A.H4B.H5B.H6B.UA.UB.UC.UD.UE.UF.G1A(10).G2A(10)
007
         COMPLEX G3A(10).G1B(10).G2B(10).G3B(10).G1C(10).G2C(10).G3C(10)
008
         COMPLEX G44(10).G54(10).G64(10).G48(10).G58(10).G68(10).CMPLX
         DIMENSION RH(43). ZH(43). X(48). A(48). XT(10). AT(10). RS(42). ZS(42)
009
010
         DIMENSION D(42).DR(42).DZ(42).DN(42).C1(48).C2(48).C3(48).C4(200)
110
         DIMENSION C5(200).C6(200).R2(10).Z2(10).R7(10).Z7(10)
012
         CT≃2.
013
         CP=-1
014
         00 10 I=2.NP
015
         12=1-1
016
         RS(12)=.5*(RH(1)+RH(12))
017
         IF(RS(12).E0.0.) RS(12)=1.
018
         ZS(12)=-5*(ZH(1)+ZH(12))
019
         D1=.5*(RH(I)-RH(12))
020
         D2=-5+(ZH(I)-ZH(12))
150
         D(12)=SQRT(D1+D1+D2+D2)
922
         DR((2)=D1
023
         DZ(12)=D2
024
         DM(12)=D(12)/RS(12)
025
       10 CONTINUE
026
         M3=M2-M1+1
027
         M4=M1-1
028
         P12=1-570796
029
         PP=9.869604
030
         00 11 K=1.NPHI
         PH=P12*(X(K)+1.)
0.31
032
         C1 (K)=PH
033
         C2(K)=PH+PH
034
         SN=SIN( .5#PH)
         C3(K)=4.*SN*SN
035
036
          A1=P12+A(K)
          D4=-5*A1*C3(K)
037
880
         DS=AI+CDS(PH)
         D6=AL+SIN(PH)
039
940
          NS=K
041
          DO 29 H=1.43
         PHM=(M4+M/*PH
042
043
          A2=COS (PHN)
044
         C4(M5)=04#A2
C45
         C5(M5)=05#A2
046
          C6 (M5)=D6+SIN(PHM)
047
          M5=M5+NPH[
048
       29 CONTINUE
       11 CONTINUE
049
050
          PN1=3.141593*[N
         U=(0..1.)
051
052
          U1=.5+U
          U2=2.+U
053
054
          MP=NP-1
055
          MT=MP-1
056
          N=MY+MP
057
          N2N=NT+N
058
          N2=N#N
C59
          JN=-1-N
          DO 15 JO=1.MP
060
```

```
061
         KQ=2
          1F(JQ.EQ.1) KQ=1
062
063
          IF(JQ-EQ-MP) KQ=3
064
         RI=RS(JQ)
065
          Z1= ZS(JQ)
         01=0(10)
066
067
         D2=0R(JQ)
068
         D3=DZ(JQ)
         D4=D2/R1
069
070
         05=01 /R1
          SV=D2/D1
071
072
         CV=D3/D1
         P1=PN1+D5
073
         P3=2.#01
074
075
         P4=2.+D4
076
         P5=D4*D4
077
         P6=D1+D1
          P7=P6+01
078
          T6=CT+D1
079
          T62=T6+D1
080
081
          T62=T62+T62
082
          R6=CP#R1
         R62=R6+R6
083
084
         DO 12 L=1.NT
         06=XT(L)
085
086
          R2(L)=R1+D2+D6
         Z2(L)=Z1+03+06
087
      12 CONTINUE
880
089
         DO 16 IP=1.MP
         R3=RS(IP)
090
091
          23=2S(1P)
         R4=R1-R3
092
093
          Z4=Z1-Z3
         U3=D2+U1
094
095
         U4=03+U1
096
         DO 40 L=1.NT
         D7=R2(L)-R3
097
098
          D8=Z2(L)-Z3
059
          R7(L)=R3+R2(L)
100
          Z7(L)=D7+D7+D8+D8
      40 CONTINUE
101
102
          PH=R4+SV+Z4+CV
          A1=ABS(PH)
103
          A2=ABS (R4+CV-Z4+SV)
104
          D6=A2
105
106
          IF(A1-LE-D1) GO TO 26
          D6=A1-D1
107
          D6=SQRT(D6+D6+A2+A2)
108
       26 ZIP=R4+R4+Z4+Z4
109
          IF(ZIP-NE-0.-AND-(R6-GT-D6-OR-T6-LE-D6)) GO TO 41
110
          Z5=ZIP
111
          R5=R3+R1
112
113
          PHM=.5+R3+SV
          DO 33 K=1.NPHI
114
115
          AL=C3(K)
          RR= 25+R5+AL
116
117
          H1 A=0.
          H2A=0.
118
119
          HJA=0.
          H4A=0.
120
```

```
121
         H5A=0.
155
         IF(RR.LT.T62) GO TO 34
123
         DO 35 L=1.NY
124
         W=27(L)+R7(L)+A1
125
         R=SORT(W)
126
         SN=-SIN(R)
127
         CS=COS(R)
128
         D6=AT (L )/R
129
         HI B=D6/W+CMPLX (CS-R+SN,SN+R+CS)
130
         HLA=H18+H1A
131
         H28=XT(L)+H18
132
         H2A=H2B+H2A
133
         H3A=XT(L)+H28+H3A
134
         H4B=D6+CNPL X (CS.SN)
135
         H4A=H48+H4A
136
         H5A=XT(L) +H48+H5A
137
      35 CONTINUE
138
          GO TO 36
139
      34 DO 37 L=1.NT
140
          #=27(L)+R7(L)*A1
141
          R=SQRT(W)
142
          IF(R.GT..5) GO TO 14
143
          CS=R+(W+(.694444E-2-W+.1736111E-3)-.125)
          SN=W+(.3333333E-1-W+.1190476E-2)-.3333333
144
145
          H1B=AT(L) + CMPLX(CS, SN)
          CS=R*(W*(-4166667E-1--1388889E-2*W)--5)
146
147
          SN=W+(W+(.1984126E-3+W-.8333333E-2)+.1666667)-1.
148
          H4B=AT(L) + CMPLX(CS,SN)
149
          GO TO 43
150
       14 SN=-SIN(R)
151
          CS=COS(R)
152
          D6=AT(L)/R
153
          H18=06*((CMPLX(CS-R*SN.SN+R*CS)-1.)/#-.5)
154
          H4B=D6*CMPLX(CS-1.,SN)
       43 H1A=H18+H1A
155
156
          H28=XT(L)*H18
157
          H2A=H2B+H2A
158
          H3A=XT(L)+H2B+H3A
159
          H4 A=H48+H4A
160
          HSA=XT(L) +H4B+H5A
161
       37 CONTINUE
162
          A1=PH+PHM+A1
163
          A2=ABS(AL)
          R=RR-A2+A2
164
165
          D6=A2-D1
166
          D7=A2+D1
          D62=D6*D6
167
168
          D72=07+D7
159
          D8=SQRT(D62+R)
170
          D9=SQRT(D72+R)
171
          1F(R-(RR+1.E-51) 52.52.53
172
       52 IF(D6.LT.0.) STOP
173
          ¥4=.5/D62-.5/D72
174
          GO TO 54
       53 W4=(D7/D9-D6/D8)/R
175
176
       54 IF(D6.GE.O.) GO TO 38
          W=ALOG((07+09)+(-06+08)/R)
177
178
          GO TO 39
179
       38 W=ALOG((D7+D9)/(D6+D3))
180
       39 W1=(W4+.5+W)/D1
```

```
181
          W5=A2/D1
182
         W2=(.5*(D9-D8)-1./D9+1./D8)/P6-W5*W1
1 83
          W3=(.25+(D7+D9-D6+D8)+W-R+(W4+.25+W))/P7-W5+(2.+W2+W5+W1)
124
          W4=W/D1
185
          W5=(D9-D8-A2+W)/P6
186
          IF (A1.GE.O.) GO TO 27
187
          W2=-W2
188
          ¥5=-¥5
189
      27 HIA=WI+HIA
190
          H2A=#2+H2A
191
          ACH+EV=ACH
192
          HAA=WA+HAA
193
          H5A=W5+H5A
194
      36 GA(K)=H1A
195
          G8(K)=H2A
196
          GC(K)=H3A
197
          GD(K)=H4A
198
          GE(K)=H5A
199
      33 CONTINUE
200
          K1=0
201
          DO 45 H=1.M3
202
          HIA=O.
203
          H2 A= 0.
          H3A=0.
204
205
          H18=0.
206
          H2 B=0.
207
          H38=0.
208
          H1C=0.
209
          H2C=0.
210
          H3C=0.
          H4A=0.
211
212
          H5A=0-
213
          H6 A=0-
214
          H48=0.
          H58=0.
215
216
          H68=0.
          DO 46 K=1.NPHE
217
218
          K1=K1+1
          D6=C4(K1)
219
220
          D7=C5(K1)
          D8=C6(K1)
221
222
          UA=GA(K)
223
          UB=GB(K)
224
          UC=GC(K)
225
          UD=GD(K)
226
          UE=GE(K)
          HIA=DG+UA+HIA
227
          H2A=D7#UA+H2A
228
229
          AEH+AU+BO=AEH
          H18=D6+U8+H18
230
231
          H28=07+U8+H28
          H3 B=D8+ U8+H3B
232
233
          H1C=D6+UC+H1C
          H2C=D7#UC+H2C
234
235
          H3C=D8+UC+H3C
          H4A=D6+UD+H4A
236
237
          H5A=07#UD+H5A
          H6A=D8+UD+H6A
238
239
          H48=D6+UE+H48
          H58=D74UE+H58
240
```

.

```
241
          H68=D8+UE+H68
242
       46 CONTINUE
243
          GIA(M)=HIA
244
          GZA(M)=HZA
245
          G3A(M)≃H3A
246
          G18(M)=H18
247
          G28(M)=H2B
248
          G38(M)=H38
249
          GIC(N)=HIC
250
          G2C(M)=H2C
251
          G3C(M)=H3C
252
          G4A(M)=H4A
253
          GSA(H)=HSA
          G6A(M)=H6A
254
255
          G48(N)=H48
256
          G58(M)=H58
257
          G68(N)=H68
258
       45 CUNTINUE
          IF(ZIP-NE-0-) GO TO 47
259
260
          A1=05+05
261
          08=0.
262
          D9≔0•
263
          DO 63 K=1.NPHI
264
          D8=D8+A(K)/SQRT(C2(K)+A1)
          D9=D9+A(K) *BLOG(D5/C1(K))
265
266
       63 CONTINUE
267
          A2=3-141593/05
          D8=(BLGG(A21-P12+081/(R5+R1)
268
          09=2-/R1+(BLOG(A2)+A2+BLOG(1-/A2))-3-141593/D1+D9
 269
270
          DO 67 M=1.M3
271
          GIA(M)=D8+GIA(M)
          G2A(M)=0.
272
273
          G28(M)=0.
. 274
          G2C(M)=0.
275
          G3A(N)=0.
276
           G5A(M)=D9+G5A(M)
217
       67 CONTINUE
 278
           GD TO 47
       41 DO 25 M=1.M3
279
280
          G1 A(M)=0.
 281
          G2A(M)=0.
 282
          G3A(M)=0.
 283
          G1E(N)=0.
          G2B(N)=0.
 284
285
          G38(M)=0.
 296
          G1C(M)=0.
 287
          G2C(N)=0.
          G3C(M)=0.
 238
          G4A(M)=0.
 289
 290
          G5A(M)=0.
          G6A(M)=0.
 291
 292
          G4B(M)=0.
          G58(M)=0.
 293
 294
          G6B(M)=0.
       25 CONTINUE
 295
          DQ 13 L=1.NT
 296
 297
          R5=R7(L)
 298
          25=27(L)
 299
          DO 17 K=1.NPHE
           W=25+R5+C3(K)
 300
```

```
301
          R=SORT(W)
302
          SN=-SIN(R)
303
          CS=COS(R)
304
          GA(K)=CMPLX(CS-R+SN.SN+R+CS)/(W+R)
305
          GD(K)=CMPLX(CS,SN)/R
306
       17 CONTINUE
307
          IF(R62-LE-Z5) GO TO 51
308
          D6=0.
309
          07=0.
310
          D9=0.
311
         DO 62 K=1.NPHI
312
          W2=C2(K)
313
          W=1./(Z5+R5+W2)
314
          W1=A(K) +SQRT(W)
315
          D6=D6+#1+#2+#
316
          D7=D7+W1+(.5+W*(1.+.125+W+R5+W2+W2))
317
          D9=D9+#1
318
      62 CONTINUE
319
          W1=R5/Z5
          #2=PP+#1
320
321
          W=SQRT(W2)
322
          43=1.+W2
323
          R=SORT(W3)
324
          W4=SQRT (R5)
325
          W5=ALOG(W+R)
326
         D8=-P12+06-(W/R-W5)/(R5+W4)
327
          D6=-5+D8
328
          D7={(W/R+(WI-(.125+.1666667*W2)/W3)+.125*W5)/R5+.5*W5)/W4-P[2+D7
329
          D9=W5/W4-P12+D9
       51 A1=AT(L)
330
331
          A2=XT(L)+A1
          A3=XT(L) *A2
332
333
          K1=0
          DO 30 M=1.M3
334
          M=H+M4
335
336
          HI A= 0.
337
          H2 A=0.
338
         HJA=0.
          H4A=0.
339
340
          H5 A=0 .
341
         H6A=0.
342
          DO 32 K=1.NPHE
343
         K1=K1+1
344
         HIB=GA(K)
345
          W4=C4(K1)
346
          ¥5=C5(K1)
347
          W6=C6 (K1)
348
          H1A=W4+H18+H1A
349
          H2A=#5+H18+H2A
          H3A=W6+H1 B+H3A
350
351
          HIB=GD(K)
352
          H4A=#4+H18+H4A
353
          HSA=WS+HIB+HSA
354
         HGA=WG+HIB+HGA
355
       32 CONTINUE
          1F(R62.LE.Z5) GO TO 44
356
357
         H14=06+H1A
          H2A=D7-(W#W+1.)+D6+H2A
J58
359
         AEH+80+W=AEH
360
         H5A=09+H5A
```

ı

```
361
      44 GIA(M)=A1+H1A+GIA(M)
362
         G2A(M)=AL+H2A+G2A(M)
363
          GBA(M)=AL+HBA+GBA(M)
364
          G18(N)=A2*H1A+G18(N)
365
          G28(M) = A2+H2A+G28(M)
366
          G38(M)=A2+H3A+G38(M)
367
          GIC(M)=A3+HIA+GIC(M)
368
          G2C(M)=A3+H2A+G2C(M)
369
          G3C(N)=A3+H3A+G3C(N)
370
          G4A(M)=AL *H4A+G4A(M)
371
          G5A(M)=A1+H5A+G5A(N)
372
          G6A(M)=A1+H6A+G6A(M)
373
          G48(M)=A2*H4A+G48(M)
374
          G58(N)=A2+H5A+G58(N)
375
          G68(M)=A2+H6A+G68(N)
376
      30 CONTINUE
377
       13 CONTINUE
378
       47 A2=D(IP)
379
          W1=A2+(R4+D3-Z4+D2)
380
          ₩2=-A2*R3*D3
381
          A3=DZ(IP)
382
          D6=DR(IP)
383
          D7=Z4+D6
384
          D9=D3+D6
385
          H1C={D2+(R3+A3+D7)-R1+D9)+U1
386
          D8=A2*D1
387
          H3C=D8+U2
368
          H2C=Z4*H3C
389
          H3C=D3+H3C
390
          #3=D1+(D7-R4+A3)
391
          ¥4=D1 *(D9-D2*A3)
          W5=-D1+R1+A3
392
393
          A1=DR(IP)
394
          U5=A1+U3
395
          4U*EA=6U
396
          D6=-D2 +A2
397
          D7=D1 #A1
398
          A3=DM(IP)
          NL=ML
399
400
          DO 31 N=1.M3
401
          H2A=G2A(M)
402
          HIA=GIA(M)
403
          H2B=G2B(M)
404
          H18=G18(N)
405
          UC=W1+H2A+W2+H1A
          UB=W1 +H28+W2+H18
406
          UF=#3*(H2A+D4*H2B)+W4*(H2B+D4*G2C(N))+W5*(H1A+P4*H1B+P5*G1C(N))
407
408
          IF(ZIP-NE-0-) GO TO 48
409
          UC=UC+P1
410
          UF=UF-P1
411
       48 UA=UC-UB
412
          U8=UC+U8
413
          H3A=G3A(M)
          H38=G38(N)
414
415
          UC=H1 C+ (H3 A-H3B)
          UD=H1C+(H3A+H3B)
416
          UE=H2C+(H3A+D4+H38)+H3C+(H38+D4+G3C(M))
417
418
          H5A=G5A(N)
          H58=G58(M)
419
420
          H4A=G4A(M)+H5A
```

The state of the s

```
421
          H48=G48(N)+H58
422
          H6A=G6A(M)
423
          H68=G68(N)
424
          H3A=U5+H5A+U6+H4A
425
          H18=U5+H58+U6+H48
426
          HIA=HJA-HIB
427
          BIH+AEH=ASH
428
          H3A=-U1+H4A
429
          HIB=D6#H6A
430
          WEM+M4
431
          EA+W=IA
432
          H28=D6+H68-A1+H4A
433
          H38=D7+(H6A+D4+H68)
434
          H4A=¥+D5+H4A
435
          K1=IP+JM
436
          K2=K1+1
437
          K3=K1+N
438
          K4=K2+N
439
          K5=K2+MT
440
          K6=K4+MT
441
          K7=K3+N2N
442
          K8=K4+N2N
443
          K9=K8+MT
444
          GO TO (18.20.19).KQ
445
       18 Y(K6)=U8
446
          Z(K6)=H1B+H28
447
          IF( IP-EQ-1) GO TO 21
448
          Y(K3)=Y(K3)+UD
449
          Y(K7)=Y(K7)+UF
450
          Z(K3)=Z(K3)+H2A-H3A
451
          Z(K7)=Z(K7)+H38-H4A
452
          IF (IP.EQ.MP) GO TO 22
453
       21 Y(K4)=UD
454
          Y(K8)=UF
455
          Z(K4)=H2A+H3A
456
          Z(K8)=H3B+H4A
457
          GO TO 22
458
       19 Y(K5)=Y(K5)+UA
459
          Z(K5)=Z(K5)+H18-H28
460
          IF(IP-EQ-1) GO TO 23
461
          Y(K1)=Y(K1)+UC
462
          Y(K7)=Y(K7)+UF
463
          Z(K1)=Z(K1)+H1A+H3A
464
          Z(K7)=Z(K7)+H3B-H4A
                                   ARI
                                            Z(K7)=Z(K7)+H3B-H4A
465
          IF(IP.EQ.MP) GO TO 22
                                  482
                                             IF(IP-EQ-MP) GO TO 22
466
       23 Y(K2)=Y(K2)+UC
                                   483
                                         24 Y(K2)=Y(K2)+UC
467
          Y ( K8) =UF
                                   484
                                            Y(K4)=UD
468
          Z(K2)=Z(K2)+H1A-H3A
                                   485
                                            Y(K8)=UF
469
          Z(K8)=H38+H4A
                                   486
                                            Z(K2)=Z(K2)+H1A-H3A
470
          GO TO 22
                                   487
                                            Z(K4)=H2A+H3A
471
       20 Y(K5)=Y(K5)+UA
                                  488
                                            Z(K8)=H38+H4A
472
          Y(K6)≠UB
                                  489
                                         22 Y(K9)=UE
473
          Z(K5)=Z(K5)+H18-H28
                                   490
                                            Z(K9)=U2+(D8+(H5A+D4+H5B)-A1+H4A)
474
          Z(X6)=H1B+H2B
                                  491
                                            JM=JM+N2
475
          IF(IP.EQ.1) GO TO 24
                                  4 92
                                         31 CONTINUE
476
          Y(X1)=Y(K1)+UC
                                  493
                                         16 CONTINUE
477
          Y(K3)=Y(K3)+UD
                                  494
                                            M+ML=ML
478
          Y(K7)=Y(K7)+UF
                                  495
                                         15 CONTINUE
479
          Z(K1)=Z(K1)+H1A+H3A
                                  496
                                            RETURN
480
          Z(K3) = Z(K3) + H2A - H3A
                                  497
                                            END
```

III. THE FUNCTION BLOG AND THE SUBROUTINES PLANE, DECOMP, AND SOLVE

The function BLOG is exactly the same as in [3, page 56]. The only difference between the subroutine PLANE (of the present report) and the subroutine PLANE of [3, pages 57-62] is that the statement

IF(R1.EQ.O.) R1 = .5

in line 39 of PLANE has no counterpart in the subroutine PLANE of [3, pages 57-62]. The action of this statement is similar to that of the statement in line 17 of the subroutine YZA. Except for a difference in the actual space allocated to the variables UL, SCL, and IPS, the subroutine DECOMP is the same as the subroutine DECOMP of [3, pages 63-64]. Minimum allocations in DECOMP are the same as those in the subroutine DECOMP of [3, pages 63-64]. The subroutine SOLVE differs from the subroutine SOLVE of [3, pages 63-64] only in the actual space allocated to the variables UL, B, X, and IPS. Minimum allocations in SOLVE are the same as those in the subroutine SOLVE of [3, pages 63-64].

```
001 C
          LISTING OF THE FUNCTION BLOG
          FUNCTION BLCG(X)
002
003
          IF(X-GT--1) GO TO 1
          X2=X4X
004
005
          BLOG=((.075*X2-.1666667)*X2+1.)*X
006
          RETURN
007
        1 BLOG=ALOG( X+SQRT(1.+X+X))
          RETURN
OGR
009
          END
          LISTING OF THE SUBROUTINE PLANE
OLC
011
          SUBROUTINE PLANE(MI.M2.NF.NP.NT.RH.ZH.XT.AT.THR.R)
012
          COMPLEX R(240).U.UI.UA.UB.FA(10).FB(10).F2A.F28.F1A.F1B.U2.U3.U4
C13
          COMPLEX US.CMPLX
044
          DIMENSION RH(43).ZH(43).XT(10).AT(10).THR(3).CS(3).SN(3).R2(10)
          DIMENSION Z2(10).83(50)
015
C16
          MP=NP-L
          MT=MP-L
017
918
          N=MT+MP
          N2=2+N
019
0.20
          DO 11 K=1.NF
          X=THR(K)
021
          CS(K)=COS(X)
022
          SN(K)=SIN(X)
023
024
       11 CONTINUE
025
          U= (0. .1.)
          UL=3.141593+U++N1
026
          M3=M1+1
027
          M4=M2+3
0.28
          IF(M1.EQ.0) M3=2
029
          M5=M1+2
030
          M6=M2+2
0.31
032
          DO 12 IP=1.MP
          K 2= 1P
033
034
          I=1P+1
          DR=.5*(RH(I)-RH(IP))
0.35
036
          DZ=.5*(ZH(I)-ZH(IP))
          DI=SQRT(OR+DR+0Z+0Z)
0.37
680
          R1 = -25 + (RH(I) + RH(IP))
          If (R1.EQ. 0.) R1=.5
C39
          Z 4= .5 + (ZH( [ ) + ZH( [P) )
040
          DR=.5*DR
041
          D2=DR/R1
042
          DO 13 L=1.NT
043
          R2(L)=R1+DR+XT(L)
044
          Z2(L)=Z1+DZ+XT(L)
045
       13 CONTINUE
046
047
          DO 14 K=1.NF
          CC=CS(K)
OAR
          SS=SN(K)
049
          D3=DR+CC
0.50
051
          D4=-DZ#SS
          D5=D1+CC
052
          DO 23 M=M3.M4
053
          FA(M)=0.
054
          F8(M)=0.
055
       23 CONTINUE
056
          DG 15 L=1.NT
057
          X=55+R2(L)
058
          IF(X.GT..5E-7) GO TO 19
059
960
          PH.EM=M 05 00
```

```
#J(M)=0.
061
      20 CONTINUE
C62
         BJ(21=1.
063
         S=1.
064
         GO TO 18
065
      19 M=2.8+X+14.-2./X
066
         IF(X.LT..5) M=11.8+ALOG10(X)
067
          IF (H.LT. M4) N=M4
068
          .0=(M)=0
069
          JM=M-L
070
          8J(JM)=1.
071
          DO 16 J=4.N
072
          J2=JH
073
          I-ML=ML
074
          JE = JM-1
075
          (S+ML)LB-(SL)LB+X\1L=(ML)LB
076
       16 CONTINUE
0/7
          S=0.
078
          IF(M.LE.4) GO TO 24
079
          DO 17 J=4.N.2
080
          S=S+BJ(J)
180
       17 CONTINUE
C82
       24 S=8J(2)+2.*S
580
       18 ARG=Z2(L)+CC
084
          UA=AT(L)/S*CMPLX(COS(ARG), SIN(ARG))
 C85
          UB=XT(L)+UA
 086
          DQ 25 M=M3.N4
 087
          FA(M)=BJ(M)+UA+FA(M)
 C88
          FB(M)=BJ(M)+UB+FB(M)
 089
        25 CUNTINUE
 090
        IS CONTINUE
 091
           IF(M1.NE.0) GO TO 26
 092
           FA(1)=-FA(3)
 093
           FB(1)=-FB(3)
 094
        26 UA=U1
 095
           DO 27 M=M5.N6
 096
           M7=H-1
 097
           1+M=BM
 C98
           F2A=UA+(FA(M8)+FA(M7))
 099
           F28=UA+(F8( M8)+F8( M7))
 100
           UB=U+UA
 101
           FLA=UB+(FA(M8)-FA(M7))
 102
           F18=U8+(F8(M8)-F8(M7))
 103
           U4=D4#UA
 104
            U2=D3+F1A+U4*FA(M)
  105
            U3=D3+F 18+U4+F8(N)
  106
           UA=DR#FZA
  107
            U5=DR#F2B
  138
            K1=K2-1
  109
            K4=K1+N
  110
            K5=K2+N
  111
            R(K2+MT) =-D5+ (F2A+D2+F2B)
  112
            R(K5+MT)=01+(FlA+D24.718)
  113
            IF(IP-E0-1) GO TO 21
  114
            R(K1)=R(K1)+U2-U3
  115
            R(K4)=R(K4)+U4-U5
  116
            IF(1P-EQ-MP) GO TO 22
  117
         21 R(K2)=U2+U3
  118
            R(K5)=U4+U5
  119
         22 K2=K2+N2
  120
```

```
UA=UB
121
      27 CONTINUE
122
      14 CONTINUE
123
      12 CONTINUE
124
125
          RETURN
          END
126
127C
         LISTING OF THE SUBROUTINE DECOMP
          SUBROUTINE DECOMP(N.IPS.UL)
128
129
          COMPLEX UL(6241).PIVOT.EM
         DIMENSION SCL(79) . 1PS(79)
130
131
          DO 5 I=1.N
          [PS(1)=1
132
133
          RN=0.
134
          1=1
135
          DO 2 J=1.N
          ULM=ABS(REAL(UL(J1)))+ABS(AIMAG(UL(J1)))
136
137
          MAILEIL
138
          IF(RN-ULM) 1.2.2
139
       1 RN=ULM
        2 CONTINUE
140
          SCL(1)=1./RN
141
        5 CONTINUE
142
          NM1=N-1
143
          K2≃0
144
         DO 17 K=1-NM1
145
146
          BIG=0.
          00 11 E=K.N
147
148
          1P=1PS(1)
          IPK=IP+K2
149
          SIZE=(ABS(REAL(UL(IPK)))+ABS(AIMAG(UL(IPK))))+SCL(IP)
150
          IF(SIZE-BIG) 11.11.10
151
152
      10 BIG=SIZE
          IPV=1
153
                                                        IP=IPS(1)
                                              181
       11 CONTINUE
154
                                              182
                                                        X(1)=8(IP)
155
          IF(IPV-K) 14,15,14
                                                        DO 2 1=2.N
                                              183
       14 J=[PS(K)
156
                                              184
                                                        IP=IPS( I)
157
          IPS(K)=IPS(IPV)
                                                        IPR=IP
                                              185
          LPS([PV)=J
158
                                              186
                                                        IM1=I-L
159
       15 KPP=IPS(K)+K2
          PIVOT=UL(KPP)
                                              187
                                                        SUM=0.
160
                                              188
                                                        DO 1 J=1, IM1
          KP1=K+1
161
                                                        SUN=SUM+UL(IP)+X(J)
                                              180
          DO 16 I=KP1.N
162
          KP=KPP
                                              190
                                                      1 IP=IP+N
163
                                                      2 X(1)=8(1P8)-SUM
                                              191
164
          1P=1PS(1)+K2
          EM=-UL (IP)/PIVOT
                                              192
                                                        K2=N+(N-1)
165
                                              L 93
                                                        IP=IPS(N)+K2
       18 UL([P)=-EH
166
          DO 16 J=KP1.N
                                              194
                                                        X(N)=X(N)/UL(IP)
167
                                              195
                                                        DO 4 18ACK=2.N
          1P=IP+N
168
                                                        I=NP1-LBACK
          KP=KP+N
                                              196
169
                                              197
                                                        K2=K2-N
          UL (IP)=UL(IP)+EM+UL(KP)
170
                                              198
                                                        1P1=1PS(1)+K2
171
       16 CONTINUE
                                                        101=1+1
          K2=K2+N
                                              100
172
                                              200
                                                        SUN= 0.
       17 CONTINUE
173
                                                        191=91
          RETURN
                                              201
174
                                              202
                                                        DO 3 J=IP1.N
          END
175
                                                        IP=IP+N
          LISTING OF THE SUBROUTINE SOLVE
                                              203
176
          SUBROUTINE SOLVE(N. IPS,UL. B.X)
                                              204
                                                      3 SUMASUM+UL(IP)+X(J)
177
          COMPLEX UL (6241).8(79).X(79).SUM 205
                                                      4 X(1)=(X(1)-SUN)/UL(1P1)
178
179
          DIMENSION IPS(79)
                                              20€
                                                        RETURN
                                              207
                                                        END
          NP1=N+1
180
```

the time that the said majority probability there is a second

t

IV. THE SUBROUTINE PRNT

The subroutine PRNT uses knowledge of the superscripted I_{nj} 's or V_{nj} 's and the k^+ $\bar{\rho}^\pm$'s in a portion of [1, Eqs. (87a), (88a), and (89a)] and in the corresponding portion of [1, Eqs. (87b), (88b), and (89b)] in order to calculate and print out these portions of [1, Eqs. (87)-(89)]. By calling the subroutine PRNT repeatedly, it is possible to print out all the quantities on the right-hand sides of [1, Eqs. (87)-(89)] except those for the cases in which j=1 and $j=N^+$ in [1, Eq. (87a)] and $j=M^++1$ and $j=M^++M$ in [1, Eq. (89a)]. PRNT is not designed to treat these cases. They are included in [1, Eqs. (87a) and (89a)] merely for convenience.

Except for the cases in which j = 1 and $j = N^{+}$ in [1, Eq. (87a)] and $j = M^{+} + 1$ and $j = M^{+} + M$ in [1, Eq. (89a)], any portion of [1, Eqs. (87a), (88a), and (89a)] can be written as

$$C1 * XX(J + JX)/RA(J + J3), J = 1,2,...J1$$
 (27)

and the corresponding portion of [1, Eqs. (87b), (88b), and (89b)] can be written as

$$C2 * XX (J+J1+JX)/(RA(J+J4-1) + RA(J+J4)), J = 1,2,...J2$$
 (28)

In (27) and (28), XX represents the I_{nj} 's or V_{nj} 's of [1], and RA represents the k^{+} $\bar{\rho}^{\pm}$'s of [1]. In (27), C1 is either ε_{n} or 2j. In (28), C2 is either 4j or $2\varepsilon_{n}$. The sum of the two RA's in the denominator of (28) is due to [1, Eq. (12)]. The complex numbers (27) are t directed currents, either electric or magnetic. The complex numbers (28) are ϕ directed currents. The set of complex numbers (28) is linked to the set

(27) by the fact that the XX's used in (28) occur immediately after those used in (27).

First, the subroutine PRNT (J1, J2, J3, J4, RA) prints out the real part, the imaginary part, and the magnitude of each of the complex numbers (27) under the heading which appears in statement 10. Then, PRNT prints out the real part, the imaginary part, and the magnitude of each of the complex numbers (28) under the heading which appears in statement 13. The variables in (27) and (28) enter PRNT by means of the arguments of PRNT and the statement

COMMON C1, C2, XX, JX

in line 6. If J1 = 0, nothing from (27) is printed out. If J2 = 0, nothing from (28) is printed out. All the arguments of PRNT are input arguments. The common variables C1, C2, and XX are input variables. However, the common variable JX functions as both an input variable and an output variable. PRNT adds J1 + J2 to the original value of JX.

Minimum allocations in PRNT are given by

COMPLEX XX(J2 + J1 + JX)

DIMENSION RA(Max(J1+J3, J2+J4))

where Max denotes the larger of the two values in the parentheses. Of course, the space allocated to XX in the calling program must be exactly the same as the space allocated to XX in line 4 of PRNT.

DO loop 11 prints out the complex numbers (27). Line 14 obtains (27). DO loop 14 prints out the complex numbers (28). Line 27 obtains (28).

```
001 C
         LISTING OF THE SUBROUTINE PRNT
         SUBROUTINE PRNT(J1.J2.J3.J4.RA)
002
         COMPLEX C1.C2.U
003
004
         COMPLEX XX(79)
         DIMENSION RA(43)
005
         COMMON C1.C2.XX.JX
006
007
         IF(J1.EG.O) GO TO 15
         WRITE(3.10)
300
009
      10 FORMAT(*O REAL JT
                                IMAG JT
                                             MAG JTº)
010
         K3=J3
011
         00 11 #1.31
012
         K3=K3+1
013
         JX=JX+1
014
         U=C1/RA(K3)+XX(JX)
015
         W=CABS(U)
016
         WRITE(3.12) U.W
C1 7
      12 FORMAT(1X.JE11.4)
      11 CONTINUE
018
019
      15 IF(J2.EQ.0) RETURN
         WRITE(3.13)
020
021
      13 FORMAT( *O REAL JP
                                INAG JP
                                             MAG JP4)
         K4=J4
226
023
         00 14 J=1.J2
024
         JX=JX+1
025
         K3=K4
026
         K4=K4+1
         U=C2/(RA(K3)+RA(K4))*XX(JX)
027
         W=CABS(U)
028
029
         WRITE(3.12) U.W
      14 CONTINUE
030
031
         RETURN
032
         END
```

V. THE MAIN PROGRAM

The main program accepts input data and calls the subroutines YZA, PLANE, DECOMP, SOLVE, and PRNT in order to calculate and print out [1, Eqs. (87)-(89)]. The input data are read from punched cards according to

READ(1,15) NT, NPHI

15 FORMAT(213)

READ(1,10)(XT(K), K=1, NT)

READ(1,10)(AT(K), K=1, NT)

10 FORMAT (5E14.7)

READ(1,10)(X(K), K=1, NPHI)

READ(1,10)(A(K), K=1, NPHI)

READ(1,16) NA, NB, MA, MB, MC, LA, LB, LC,

M1, M2, BK, UR, ER, THR(1)

16 FORMAT(1013/4E14.7)

READ(1,18)(RA(I), I=1, NA)

READ(1,18)(ZA(I), I=1, NA)

18 FORMAT(10F8.4)

READ(1,18)(RB(I), I=1, NB)

READ(1,18)(ZB(I), I=1, NB)

Most of the input variables in the main program represent variables in [1] and [2]. Table 3 relates input variables in the main program to variables in [1] and [2]. The input variable NT in Table 3 represents both n_t and n_T . It is assumed that $n_t = n_T$ in the main program. The Gaussian quadrature $\binom{(n_t)}{t}, \binom{(n_t)}{t}, \binom{(n_t)}{t}, \binom{(n_t)}{t}, and \binom{(n_t)}{t}$ are given in [4, Appendix A]. It is

Table 3. Input data for the main program.

Variable in main program	Variable in [1] or [2]	Equation or figure number in [1] or [2]
NT	$n_t = n_T$	[2, Eqs. (35) and (79)]
NPHI	$^{\mathbf{n}}_{\mathbf{\phi}}$	[2, Eq. (36)]
ХТ	$x_{\ell}^{(n_t)}, \ell' = 1, 2, \dots n_t$	
AT	$A_{\ell'}^{(n_t)}, \ell' = 1,2,n_t$	[2, Eq. (35)]
x	$x_{\ell}^{(n_{\phi})}, \ell = 1, 2, \dots n_{\phi}$	
A	$A_{\ell}^{(n_{\varphi})}, \ell = 1, 2, \dots n_{\varphi}$	[2, Eq. (36)]
NA	N^+	[1, Fig. 4]
NB	n -	[1, Fig. 5]
MA	м ⁺	[1, Fig. 4]
МВ	m ⁻	[1, Fig. 5]
МС	М	[1, Figs. 4 and 5]
ВК	k ⁺	[1, Eqs. (73)-(84)]
UR	μ ⁻ /μ ⁺	[1, Fig. 1]
ER	$\varepsilon^{-}/\varepsilon^{+}$	[1, Fig. 1]
THR(1)	$\theta_{\mathbf{t}}$	[1, Eq. (92)]
RA	$\vec{\rho}_{j}^{\dagger}$, $j = 1, 2, \dots N^{\dagger}$	[1, Eq. (11)]
ZA	\bar{z}_{j}^{+} , j = 1,2,N ⁺	[1, Eq. (11)]
RB	$\bar{\rho}_{j}$, $j = 1, 2, \dots N^{-}$	[1, Eq. (11)]
ZB	$\overline{z_j}$, $j = 1, 2, \dots N$	[1, Eq. (11)]

assumed that $N^+ \ge 3$, $N^- \ge 3$, and $M \ge 1$. It is also assumed that either

$$\begin{cases}
M^{+} = 0 \\
M^{-} = 0
\end{cases}$$
or
$$\begin{cases}
M^{+} > 0 \\
M^{-} > 0
\end{cases}$$
and that either
$$\begin{cases}
N^{+} - M^{+} - M = 0 \\
N^{-} - M^{-} - M = 0
\end{cases}$$
or

$$\begin{cases}
N^{+} - M^{+} - M > 0 \\
N^{-} - M^{-} - M > 0
\end{cases}$$
If
$$\begin{cases}
M^{+} = 0 \\
M^{-} = 0
\end{cases}$$
, then there is no conductor below

the aperture as in [1, Fig. 18]. If $\begin{cases} N^+ - M^+ - M = 0 \\ N^- - M^- - M = 0 \end{cases}$, then there is

no conductor above the aperture as in [1, Fig. 10]. In Table 3, THR(1) is in radians.

The input variables LA, LB, LC, M1, and M2 are not listed in Table 3. The input variables LA, LB, and LC allow for generating curves different from those in [1, Figs. 4 and 5]. LA, LB, and LC are either 0 or 1.

- LA = 0 if the generating curve of the surface (S⁺ + A)

 does not close upon itself.
- LA = 1 if the generating curve of the surface (S⁺ + A) closes upon itself.
- LB = 0 if the generating curve of the surface (S + A)

 does not close upon itself.
- LB = 1 if the generating curve of the surface (S + A) closes upon itself.
- LC = 0 if the generating curve of the aperture does not close upon itself.
- LC = 1 if the generating curve of the aperture closes
 upon itself.

For example, LA = 0, LB = 1, and LC = 0 for the generating curves in [1, Figs. 4 and 5]. If LA = 1, it is assumed that $M^{+} \ge 1$ and $N^{+} - M^{+} - M \ge 2$.

If LB = 1, it is assumed that $M \ge 1$ and that $N - M - M \ge 2$. LC = 1 implies that the object under consideration reduces to a homogeneous material obstacle with parameters (μ^-, ϵ^-) in contrast with the parameters of the external environment. As for M1 and M2, [1, Eqs. (87)-(89)] are printed out for n = M1, M1 + 1,...M2.

Minimum allocations in the main program are given by

COMPLEX XX(N), YP(M*JA*JA), ZP(M*JA*JA),

YM(M*JB*JB), ZM(M*JB*JB), R(2*M*JA),

T(N*N), Y(N)

DIMENSION XT(NT), AT(NT), X(NPHI), A(NPHI), RA(NA), ZA(NA), RB(NB), ZB(NB), IPS(N)

where

$$N = \sum_{I=1}^{4} L1A(I) + \sum_{I=1}^{4} L1B(I) + L2(1) + L2(2) + L3(1) + L3(2)$$
 (29)

$$M = M2 - M1 + 1 \tag{30}$$

$$JA = 2 * NA - 3 \tag{31}$$

$$JB = 2 * NB - 3$$
 (32)

The L's on the right-hand side of (29) are calculated in the main program. At any rate, N is the order of the moment matrix T_n given by [1, Eq. (33)].

At the end of this section, the main program is listed along with sample input and output data. The sample data are for the object of [1, Fig. 13] with $k^+a = 2.5$ and $\epsilon_r = 2$ as in [1, Fig. 17]. The output data printed under the heading "Electric current on first part of outside conductor" are, with reference to [1, Eq. (87)],

$$J_{n}^{t+\theta}(\bar{t}_{j}^{+}), \quad j = 2,3,...M^{+}$$
 (33)

and

$$J_n^{\phi+\theta}(t_i^+), \quad j = 1, 2, 3, ... M^+$$
 (34)

The real and imaginary parts and magnitudes of (33) are printed under the heading "Real JT Imag JT Mag JT." The real and imaginary parts and magnitudes of (34) are printed under the heading "Real JP Imag JP Mag JP." The output data printed under the heading "Electric current on second part of outside conductor" are

$$J_n^{t+\theta}(\bar{t}_i^+), \quad j = M^+ + M + 1, \quad M^+ + M + 2, \dots N^+ - 1$$
 (35)

and

$$J_n^{\phi+\theta}(t_j^+), \quad j = M^+ + M, M^+ + M + 1, ... N^+ - 1 - LA$$
 (36)

The output data printed under the heading "Electric current on first part of inside conductor" are, with reference to [1, Eq. (88)],

$$J_n^{t-\theta}(\bar{t}_j^-), \quad j = 2,3,...M^-$$
 (37)

and

$$J_n^{\phi-\theta}(t_j^-), \quad j = 1,2,3,...M^-$$
 (38)

The output data printed under the heading "Electric current on second part of inside conductor" are

$$J_n^{t-\theta}(\bar{t}_j^-), \quad j = M^- + M + 1, \quad M^- + M + 2, ...N^- - 1$$
 (39)

and

$$J_n^{\phi-\theta}(t_j^-), \quad j = M^- + M, \quad M^- + M + 1, ...N^- - 1 - LB$$
 (40)

The output data printed under the heading "Electric current in aperture" are, with reference to [1, Eq. (87)],

$$J_n^{t+\theta}(\bar{t}_j^+), \quad j = M^+ + 1, \quad M^+ + 2, \dots M^+ + M$$
 (41)

and

$$J_n^{\phi+\theta}(t_j^+), \quad j = M^+ + 1, \quad M^+ + 2, \dots M^+ + M - 1 - LC$$
 (42)

If, as in [1, Fig. 18], there is no conducting surface below the aperture, then $j = M^+ + 1$ is deleted in (41). If, as in [1, Fig. 10], there is no conducting surface above the aperture, then $j = M^+ + M$ is deleted in (41). The output data printed under the heading "Magnetic current in aperture" are, with reference to [1, Eq. (89)],

$$M_n^{t\theta}(\bar{t}_j^+), \quad j = M^+ + 2, \quad M^+ + 3, \dots M^+ + M - 1$$
 (43)

and

$$M_n^{\phi\theta}(t_j^+), \quad j = M^+ + 1, \quad M^+ + 2, \dots M^+ + M - 1 - LC$$
 (44)

If, in any of (33)-(44), the upper limit on j is less than the starting value of j, then no values of j are to be taken. For example, if M^+ = 1 in (33), then no values of j are to be taken in (33).

Since [1, Eq. (12)] is used for ρ_j^{\pm} , the factors 2, 4j, 2j, and 4 are needed in [1, Eqs. (87)-(89)] when $n \ge 1$. In the main program, lines 48-51 store these factors in C3, C4, C5, and C6. Line 53 stores in BB the propagation constant of the medium characterized by (μ^-, ϵ^-) in [1, Fig. 1]. This propagation constant is called k^- . With regard to [1, Eq. (33)], line 54 stores η_r in ET and line 55 stores $1/\eta_r$ in ET1. DC loop 23 puts $k^+\rho_I^+$ in RA(I) and $k^+z_I^+$ in ZA(I). DO loop 24 puts $k^-\rho_I^-$ in RB(I) and $k^-z_I^-$ in ZB(I).

The elements $Y_{nij}^{pq\pm}$ and $Z_{nij}^{pq\pm}$ of the submatrices on the right-hand side of [1, Eq. (33)] are given by [1, Eqs. (36) and (35)]. The testing functions $\underline{W}_{ni}^{p\pm}$ and the expansion functions $\underline{J}_{nj}^{q\pm}$ appear in [1, Eqs. (36) and (35)]. However, the submatrices supplied by the subroutine YZA are $Y_n^{rs\pm}$ and $Z_n^{rs\pm}$ whose elements are defined by

$$Y_{ni'j}^{rs\pm}, = -\langle W_{ni'}^{r\pm}, H^{\pm}(\underline{J}_{nj}^{s\pm}, 0) \rangle$$

$$Z_{ni'j}^{rs\pm}, = -\langle W_{ni'}^{r\pm}, \frac{1}{n^{\pm}} E^{\pm}(\underline{J}_{nj}^{s\pm}, 0) \rangle$$

$$(45)$$

$$x = t, \phi$$

Equations (45) and (46) are (3) and (4) with the superscript \pm appended, with i replaced by i', and with j replaced by j'. In (45) and (46), the testing functions are $\underline{W}_{ni}^{r\pm}$, and the expansion functions are $\underline{J}_{nj}^{s\pm}$. To obtain $Y_{nij}^{pq\pm}$ from $Y_{nij}^{rs\pm}$, and $Z_{nij}^{pq\pm}$ from $Z_{ni'j}^{rs\pm}$, we must express $\underline{W}_{ni}^{p\pm}$ in terms of $\underline{W}_{ni}^{r\pm}$, and $\underline{J}_{nj}^{q\pm}$ in terms of $\underline{J}_{nj}^{s\pm}$. From [1, Eqs. (23), (24), (27), (28), (30), and (37)], we obtain

$$\underline{W}_{\mathbf{n}\mathbf{i}}^{\mathbf{p}\pm} = (\underline{J}_{\mathbf{n}\mathbf{i}}^{\mathbf{p}\pm})^* \tag{47}$$

where * denotes complex conjugate. [1, Eq. (48)] and (47) state that the testing functions are the complex conjugates of the expansion functions. Hence, the expressions for $\underline{W}_{ni}^{p\pm}$ in terms of $\underline{W}_{ni}^{r\pm}$, will be similar to the expressions for $\underline{J}_{nj}^{q\pm}$ in terms of $\underline{J}_{nj}^{s\pm}$. Consequently, it suffices to express $\underline{J}_{nj}^{q\pm}$ in terms of $\underline{J}_{nj}^{s\pm}$.

[1, Eq. (16)] with the choice of superscript + is rewritten as

$$\underline{J}_{nj}^{+} = \begin{cases}
\underline{J}_{nj}^{+}, \ j' = 1 + M1A(1), 2 + M1A(1), \dots L1A(1) + M1A(1) & (48a) \\
\underline{J}_{nj}^{+}, \ j' = 1 + M1A(2), 2 + M1A(2), \dots L1A(2) + M1A(2) & (48b) \\
\underline{J}_{nj}^{+}, \ j' = 1 + M1A(3), 2 + M1A(3), \dots L1A(3) + M1A(3) & (48c) \\
\underline{J}_{nj}^{+}, \ j' = 1 + M1A(4), 2 + M1A(4), \dots L1A(4) + M1A(4) & (48d)
\end{cases}$$

where

$$\underline{J}_{nj}^{+}, = \begin{cases}
\underline{J}_{nj}^{t+}, & j' = 1, 2, \dots, N^{+} - 2 \\
\underline{J}_{n,j'-N}^{+} + 2, & j' = N^{+} - 1, N^{+}, \dots, 2N^{+} - 3
\end{cases}$$
(49a)

The vector functions (49a) are the t directed expansion functions on the surface (S⁺ + A) in [1, Fig. 4]. The vector functions (49b) are the ϕ directed expansion functions on the surface (S⁺ + A) in [1, Fig. 4]. Instead of expressing each j' in (48) in terms of j, we state that $\frac{J_{nj}^{1+}}{J_{nj}^{1+}}$ is the jth vector function listed on the right-hand side of (48). For example, if j = L1A(1)+3 and if $L1A(2) \ge 3$, then $\frac{J_{nj}^{1+}}{J_{nj}^{1+}} = \frac{J_{n,3+M1A}^{+}}{J_{n,3+M1A}^{+}}$. In (48),

$$L1A(1) = Max(0, M^{+} - 1)$$
 (50a)

$$L1A(2) = M^{\dagger} \tag{50b}$$

L1A(3) = Max(0,
$$N^+ - M^- - M - 1$$
) (50c)

$$L1A(4) = N^{+} - M^{+} - M - LA$$
 (50d)

$$M1A(1) = 0 (51a)$$

$$M1A(2) = N^{+}-2$$
 (51b)

$$M1A(3) = M^{+} + M - 1$$
 (51c)

$$M1A(4) = N^{+} + M^{+} + M - 3$$
 (51d)

where Max denotes maximum value. The parameters (LlA(I), I=1,2,3,4) and (M1A(I), I=1,2,3,4) are calculated by lines 64-71 of the main program.

The vector functions (48a) are the t directed expansion functions on the first part of the outside conductor. The first part of the

outside conductor is the part of S⁺ below the aperture in [1, Fig. 4]. The vector functions (48b) are the ϕ directed expansion functions on the first part of the outside conductor. The vector functions (48c) are the t directed expansion functions on the second part of the outside conductor. The second part of the outside conductor is the part of S⁺ above the aperture in [1, Fig. 4]. The vector functions (48d) are the \$\phi\$ directed expansion functions on the second part of the outside conductor.

$$\underline{J}_{nj}^{1-} = \begin{cases}
\underline{J}_{nj}^{-}, j' = 1 + M1B(1), 2 + M1B(1), \dots L1B(1) + M1B(1) \\
\underline{J}_{nj}^{-}, j' = 1 + M1B(2), 2 + M1B(2), \dots L1B(2) + M1B(2) \\
\underline{J}_{nj}^{-}, j' = 1 + M1B(3), 2 + M1B(3), \dots L1B(3) + M1B(3) \\
\underline{J}_{nj}^{-}, j' = 1 + M1B(4), 2 + M1B(4), \dots L1B(4) + M1B(4)
\end{cases} (52a)$$

where

$$\underline{J}_{nj}^{-} = \begin{cases}
\underline{J}_{nj}^{t-}, & j' = 1, 2, \dots, N-2 \\
\underline{J}_{n,j}^{\phi-}, & j' = N-1, N, \dots, 2N-3
\end{cases} (53a)$$

The vector functions (53a) are the t directed expansion functions on the surface (S $^-$ + A) in [1, Fig. 5]. The vector functions (53b) are the ϕ directed expansion functions on the surface (S + A) in [1, Fig. 5]. Equation (52) means that J_{nj}^{1-} is the jth vector function listed on the righthand side of (52). In (52),

$$L1B(1) = Max(0, M^{-} - 1)$$
 (54a)

L1B(2) =
$$M^{-}$$
 (54b)
L1B(3) = Max(0, $N^{-} - M^{-} - M - 1$) (54c)

L1B(3) = Max(0,
$$N^- - M^- - M - 1$$
) (54c)

$$L1B(4) = N^{-} - M^{-} - M - LB$$
 (54d)

$$MlB(1) = 0 (55a)$$

$$M1B(2) = N^{-} - 2$$
 (55b)

$$M1B(3) = M^{-} + M - 1$$
 (55c)

$$M1B(4) = N^{-} + M^{-} + M - 3$$
 (55d)

The parameters (L1B(I), I = 1,2,3,4) and (M1B(I), I = 1,2,3,4) are calculated by lines 72-79 of the main program.

The vector functions (52a) are the t directed expansion functions on the first part of the inside conductor and (52b) are the ϕ directed expansion functions there. The first part of the inside conductor is the part of (S⁻ + A) below the aperture in [1, Fig. 5]. The vector functions (52c) are the t directed expansion functions on the second part of the inside conductor and (52d) are the ϕ directed expansion functions there. The second part of the inside conductor is the part of (S⁻ + A) above the aperture in [1, Fig. 5].

[1, Eq. (17)] with the choice of superscript + is rewritten as

$$\underline{J}_{nj}^{2+} = \begin{cases}
\underline{J}_{nj}^{+}, & j' = 1 + M2A(1), 2 + M2A(1), \dots L2(1) + M2A(1) \\
\underline{J}_{nj}^{+}, & j' = 1 + M2A(2), 2 + M2A(2), \dots L2(2) + M2A(2)
\end{cases} (56a)$$

where J_{nj}^+ is given by (49). Equation (56) means that J_{nj}^{2+} is the jth vector function listed on the right-hand side of (56). In (56),

$$L2(1) = \begin{cases} M & M^{+} \neq 0, L1A(4) \neq 0 \\ M-1 & M^{+} = 0, L1A(4) \neq 0 \\ M-1 & M^{+} \neq 0, L1A(4) = 0 \\ M-2 & M^{+} = 0, L1A(4) = 0 \end{cases}$$
(57a)

$$L2(2) = M - 1 - LC$$
 (57b)

$$M2A(1) = Max(0, M^{+} - 1)$$
 (58a)

$$M2A(2) = N^{+} - 2 + M^{+}$$
 (58b)

where L1A(4) is given by (50d). The parameters L2(1), L2(2), M2A(1), and M2A(2) are calculated by lines 80-85 of the main program.

The vector functions (56a) consist of the t directed expansion function which straddles the first part of the outside conductor and the aperture, the t directed expansion functions in the aperture, and the t directed expansion function which straddles the aperture and the second part of the outside conductor. The vector functions (56b) are the \$\phi\$ directed expansion functions in the aperture. Four different cases are necessary in (57a) because there is no t directed expansion function which straddles the first part of the outside conductor and the aperture if the first part of the outside conductor is absent and there is no t directed expansion function which straddles the aperture and the second part of the outside conductor if the second part of the outside conductor is absent.

[1, Eq. (17)] with the choice of superscript - is rewritten as

$$\underline{J}_{nj}^{2-} = \begin{cases}
\underline{J}_{nj}^{-}, & j' = 1+M2B(1), 2+M2B(1), \dots L2(1) + M2B(1) \\
\underline{J}_{nj}^{-}, & j' = 1+M2B(2), 2+M2B(2), \dots L2(2) + M2B(2)
\end{cases} (59a)$$

where J_{nj}^- , is given by (53). Equation (59) means that J_{nj}^{2-} is the jth vector function listed on the right-hand side of (59). In (59), L2(1)

and L2(2) are given by (57). M2B(1) and M2B(2) are given by

$$M2B(1) = Max(0, M^{-} - 1)$$
 (60a)

$$M2B(2) = N^{-} - 2 + M^{-}$$
 (60b)

M2B(1) and M2B(2) are calculated by lines 86-87 of the main program. The vector functions (59a) consist of the t directed expansion function which straddles the first part of the inside conductor and the aperture, the t directed expansion functions in the aperture, and the t directed expansion function which straddles the aperture and the second part of the inside conductor. The vector functions (59b) are the ϕ directed expansion functions in the aperture. Because of [1, Eqs. (15b) and (15d)], the vector functions in the aperture in (59) are the same as the vector functions in the aperture in (56).

[1, Eq. (22)] is rewritten as

$$J_{nj}^{3+} = \begin{cases} J_{nj}^{+}, & j' = 1 + M3A(1), 2 + M3A(1), \dots L3(1) + M3A(1) \\ J_{nj}^{+}, & j' = 1 + M3A(2), 2 + M3A(2), \dots L3(2) + M3A(2) \end{cases}$$
(61b)

where J_{nj}^+ , is given by (49). Equation (61) means that J_{nj}^{3+} is the jth vector function listed on the right-hand side of (61). In (61),

$$L3(1) = Max(0, M-2)$$
 (62a)

$$L3(2) = L2(2)$$
 (62b)

$$M3A(1) = M^+ \tag{63a}$$

$$M3A(2) = N^{+} - 2 + M^{+}$$
 (63b)

where L2(2) is given by (57b). L3(1), L3(2), M3A(1), and M3A(2) are

calculated by lines 88-91 of the main program. The vector functions (61a) are the t directed expansion functions in the aperture. The vector functions (61b) are the ϕ directed expansion functions in the aperture.

Replacement of the superscript + in [1, Eq. (22)] by the superscript - gives

$$\underline{J}_{n,j}^{3-} = \begin{cases}
\underline{J}_{n,j+M^{-}}^{t-}, & j = 1,2, \dots M-2 \\
\underline{J}_{n,j+M^{-}-M+2}^{\phi-}, & j = M-1, M, \dots 2M-3
\end{cases}$$
(64)

Equation (64) is consistent with [1, Eqs. (22), (37), (15b), and (15d)]. Equation (64) can be rewritten as

$$\underline{J}_{nj}^{3-} = \begin{cases}
\underline{J}_{nj}^{-}, & j' = 1+M3B(1), 2+M3B(1), \dots L3(1) + M3B(1) \\
\underline{J}_{nj}^{-}, & j' = 1+M3B(2), 2+M3B(2), \dots L3(2) + M3B(2)
\end{cases} (65a)$$

where J_{nj}^- , is given by (53). Equation (65) means that J_{nj}^{3-} is the jth vector function listed on the right-hand side of (65). In (65), L3(1) and L3(2) are given by (62a) and (62b). M3B(1) and M3B(2) are given by

$$M3B(1) = M$$
 (66a)

$$M3B(2) = N^{-} - 2 + M^{-}$$
 (66b)

M3B(1) and M3B(2) are calculated by lines 92-93 of the main program. The vector functions on the right-hand side of (65) are the same as those on the right-hand side of (61).

To accompany the expansion functions J_{nj}^{\dagger} , of (49) and (53), testing functions W_{ni}^{\dagger} , are defined by

$$\underline{W}_{ni}^{\dagger}, = (\underline{J}_{ni}^{\dagger},)^{*} \tag{67}$$

Equations (49), (53), and (67) allow (45) and (46) to be recast as

$$Y_{ni'j'}^{\dagger} = -\langle W_{ni'}^{\dagger}, H^{\dagger}(J_{nj'}^{\dagger}, 0) \rangle$$
 (68)

$$Z_{ni'j}^{\pm}$$
, = - $\langle W_{ni}^{\pm}$, , $\frac{1}{\eta^{\pm}} E^{\pm}(\underline{J}_{nj}^{\pm}, , 0) \rangle$ (69)

Expressions (68) and (69) are the matrix elements supplied by the sub-routine YZA.

Line 94 stores in JA the order of the matrices Y_n^+ and Z_n^+ whose i'j'th elements are given by (68) and (69). Line 95 stores in JB the order of the matrices Y_n^+ and Z_n^- whose i'j'th elements are given by (68) and (69). Line 96 stores in IA the total number of vector functions listed on the right-hand side of (48). IA is the order of the submatrix Z_n^{11+} in [1, Eq. (33)]. Line 97 stores in IB the total number of vector functions listed on the right-hand side of (52). IB is the order of the submatrix Z_n^{11-} in [1, Eq. (33)]. Line 98 stores in N the order of the matrix T_n^- of [1, Eq. (33)].

Line 99 puts $Y_n^{!+}$ of (68) in YP ((n-M1)*JA*JA+1) to YP((n-M1+1)*JA*JA) and Z_n^{+} of (69) in the corresponding region of ZP for n=M1, M1+1, ... M2. Storage of $Y_n^{!+}$ and Z_n^{+} in YP and ZP is by columns. Line 100 puts $Y_n^{!-}$ of (68) in YM((n-M1)*JB*JB+1) to YM((n-M1+1)*JB*JB) and Z_n^{-} of (69) in the corresponding region of ZM for n=M1, M1+1, ... M2. Storage of $Y_n^{!-}$ and Z_n^{-} in YM and ZM is by columns. With reference to [1, Eq. (103)], line 101 puts

where

$$J1 = (n - M1) * 2 * JA$$
 (71)

and

$$n = M1, M1 + 1, ... M2$$
 (72)

DO loop 82 puts $k^{+}\rho_{J}$ in RB(J). $k^{+}\rho_{J}$ is needed in order to calculate [1, Eq. (88a)].

DO loop 86 obtains n according to n = M-1. If $n \neq M1$, DO loop 89 moves Y_n^{\dagger} down into YP(1) to YP(JA*JA) and Z_n^{\dagger} down into ZP(1) to ZP(JA*JA), DO loop 90 moves Y_n^{\dagger} down into YM(1) to YM(JB*JB) and Z_n^{\dagger} down into ZM(1) to ZM(JB*JB), and DO loop 91 moves the V's of (70) down into R(1) to R(2*JA).

The only difference between $Y_{nij}^{pq\pm}$ of [1, Eq. (36)] and $Y_{ni'j}^{\uparrow\pm}$, of (68) lies in the testing functions and expansion functions. Likewise, the only difference between $Z_{nij}^{pq\pm}$ of [1, Eq. (35)] and $Z_{ni'j}^{\pm}$, of (69) lies in the testing functions and expansion functions. The expansion functions in [1, Eqs. (36) and (35)] are related to the expansion functions in (68) and (69) by (48), (52), (56), (59), (61), and (65). According to (67) and (47), the testing functions are the complex conjugates of the expansion functions. Hence, the complex conjugates of (48), (52), (56), (59), (61), and (65) relate the testing functions in [1, Eqs. (36) and (35)] to the testing functions in (68) and (69). As a result,

$$Y_{nij}^{pq\pm} = Y_{ni'j'}^{\pm}$$
 (73)

$$z_{\text{nij}}^{\text{pq}\pm} = z_{\text{ni'j'}}^{\pm} \tag{74}$$

where j' is the subscript of the jth vector function listed on the right-hand side of either (48), (52), (56), (59), (61), or (65), whichever is appropriate. Similarly, i' is the subscript of the ith vector function listed on the right-hand side of either (48), (52), (56), (59), (61), or (65), whichever is appropriate. For example, if p = 2 and q = 1 and if the superscript + is chosen in (73), then (73) becomes

$$y_{nij}^{21+} = y_{ni'j'}^{+}$$
 (75)

where j' is the subscript of the jth vector function listed on the righthand side of (48) and i' is the subscript of the ith vector function listed on the right-hand side of (56).

With regard to [1, Eq. (33)], DO loop 25 uses (73) and (74) to store

$$\begin{bmatrix} z_{n}^{11+} \\ 0 \\ z_{n}^{21+} \\ y_{n}^{31+} \end{bmatrix}$$
(76)

by columns in T. The elements of the submatrices in (76) depend on the expansion functions (48). Hence, j' in (73) and (74) is the subscript of the jth vector function listed on the right-hand side of (48). The index of DO loop 25 is JJ. If JJ = 1, inner DO loop 26 obtains the values of j for which j' is given by (48a). If JJ = 2, DO loop 26 obtains the values

of j for which j' is given by (48b). Similarly, if JJ = 3, DO loop 26 obtains the values of j covered by (48c). Finally, if JJ = 4, DO loop 26 obtains the values of j covered by (48d).

The elements of Z_n^{11+} in (76) depend on the testing functions \underline{w}_{ni}^{1+} . These testing functions are related to \underline{w}_{ni}^{+} , of (67) by the testing function version of (48). The testing function version of (48) is (48) with \underline{J}_{nj}^{1+} replaced by \underline{w}_{ni}^{1+} , \underline{J}_{nj}^{+} , replaced by \underline{w}_{ni}^{+} , and j' replaced by i'. It is now apparent that i' in (74) is the subscript of the ith vector function listed on the right-hand side of the testing function version of (48). Inside nested DO loops 27 and 28, line 141 stores the appropriate element of Z_n^{11+} of (76) in T. The index of DO loop 27 is II. If II = 1, DO loop 28 obtains the values of i for which i' is given by the testing function version of (48a). If II = 2, DO loop 28 obtains the values of i for which i' is given by the testing function version of (48b). Similarly, if II = 3, DO loop 28 obtains the values of i covered by the testing function version of (48c). Finally, if II = 4, DO loop 28 obtains the values of i covered by the testing function version of (48d).

DO loop 29 takes care of the O in (76).

The elements of Z_n^{21+} in (76) depend on the testing functions \underline{W}_{ni}^{2+} . These testing functions are related to \underline{W}_{ni}^{+} of (67) by the testing function version of (56). Hence, i' in (74) is the subscript of the ith vector function listed on the right-hand side of the testing function version of (56). Inside nested DO loops 30 and 31, line 157 stores the appropriate element of Z_n^{21+} of (76) in T. The index of DO loop 30 is II. If II = 1, DO loop 31 obtains the values of i for which i' is

given by the testing function version of (56a). If II = 2, DO loop 31 obtains the values of i for which i' is given by the testing function version of (56b).

The elements of Y_n^{31+} in (76) depend on the testing functions \underline{W}_{n1}^{3+} . These testing functions are related to \underline{W}_{n1}^{+} , of (67) by the testing function version of (61). Hence i' in (73) is the subscript of the ith vector function listed on the right-hand side of the testing function version of (61). Inside nested DO loops 32 and 33, line 168 stores the appropriate element of Y_n^{31+} of (76) in T. The index of DO loop 32 is II. If II = 1, DO loop 33 obtains the values of i for which i' is given by the testing function version of (61a). If II = 2, DO loop 33 obtains the values of i for which i' is given by the testing function version of (61b).

With regard to [1, Eq. (33)], DO loop 34 uses (73) and (74) to store

$$\begin{bmatrix}
0 \\
\eta_{r} z_{n}^{11-} \\
\eta_{r} z_{n}^{21-} \\
y_{n}^{31-}
\end{bmatrix}$$
(77)

by columns in T. Nested DO loops 34 and 35 obtain the values of j in (73) and (74). In (73) and (74), j' is the subscript of the jth vector function listed on the right-hand side of (52). DO loop 36 obtains the 0 in (77). Nested DO loops 37 and 38 obtain the values of i for Z_{nij}^{11-} of (74) in which is the subscript of the ith vector function listed on the right-hand side of the testing function version of (52). Nested DO loops 39 and 40 obtain the values of i for Z_{nij}^{21-} of (74) in which i' is determined by the testing function version of (59). Nested DO loops 41 and 42 obtain the values of i for

 y_{nij}^{31-} of (73) in which i' is determined by the testing function version of (65).

With regard to [1, Eq. (33)], DO loop 43 uses (73) and (74) to store

$$\begin{bmatrix} z_{n}^{12+} \\ \eta_{r} z_{n}^{12-} \\ z_{n}^{22+} + \eta_{r} z_{n}^{22-} \\ y_{n}^{32+} + y_{n}^{32-} \end{bmatrix}$$
(78)

by columns in T. Nested DO loops 43 and 44 obtain the values of j in (73) and (74) in which j' is determined by (56) for the submatrices with superscript + in (78) and by (59) for the submatrices with superscript - in (78). Nested DO loops 45 and 46 obtain the values of i for Z_{nij}^{12+} of (74) with i' determined by the testing function version of (48). Nested DO loops 47 and 48 obtain the values of i for Z_{nij}^{12-} of (74) with i' determined by the testing function version of (52). Nested DO loops 49 and 50 obtain the values of i for $Z_{nij}^{22+} + \eta_r Z_{nij}^{22-}$ of (78). Z_{nij}^{22+} is given by (74) with i' determined by the testing function version of (56). Z_{nij}^{22-} is given by (74) with i' determined by the testing function version of (59). Nested DO loops 51 and 52 obtain the values of i for $Y_{nij}^{32+} + Y_{nij}^{32-}$ of (78). Y_{nij}^{32+} is given by (73) with i' determined by the testing function version of (61). Y_{nij}^{32-} is given by (73) with i' determined by the testing function version of (65).

With regard to [1, Eq. (33)], DO loop 53 uses (73) and (74) to store

$$\begin{bmatrix}
-y_n^{13+} \\
-y_n^{13-} \\
-y_n^{23+} - y_n^{23-} \\
z_n^{33+} + (\frac{1}{\eta_r}) z_n^{33-}
\end{bmatrix}$$
(79)

by columns in T. Nested DO loops 53 and 54 obtain the values of j in (73) and (74) with j' determined by (61) for the submatrices with superscript + in (79) and by (65) for the submatrices with superscript - in (79). Nested DO loops 55 and 56 obtain the values of i for Y_{nij}^{13+} of (73) with i' determined by the testing function version of (48). Nested DO loops 57 and 58 obtain the values of i for Y_{nij}^{13-} of (73) with i' determined by the testing function version of (52). Nested DO loops 59 and 60 obtain the values of i for $-Y_{nij}^{23+} - Y_{nij}^{23-}$ of (79). Y_{nij}^{23+} is given by (73) with i' determined by the testing function version of (56). Y_{nij}^{23-} is given by (73) with i' determined by the testing function version of (59). Nested DO loops 61 and 62 obtain the values of i for $Z_{nij}^{33+} + (\frac{1}{\eta_r}) Z_{nij}^{33-}$ of (79). Z_{nij}^{33+} is given by (74) with i' determined by the testing function version of (61). Z_{nij}^{33-} is given by (74) with i' determined by the testing function version of (65).

Now that the moment matrix T_n has been stored in T, we turn to the excitation vector \widetilde{B}_n^θ of [1, Eq. (101)]. The V's on the right-hand side of [1, Eq. (103)] reside in R. Because DO loop 91 has been executed, storage in R is not according to (70) as it stands but according to (70) without the offset J1. The auxiliary equation involving the W's in

.

[1, Eq. (103a)] is the testing function version of (48). Likewise, the auxiliary equation in [1, Eq. (103b)] is the testing function version of (56), and the auxiliary equation in [1, Eq. (103c)] is the testing function version of (61).

Based on the considerations in the preceding paragraph, lines 336-378 store \tilde{B}_n^θ of [1, Eq. (101)] in Y. Nested DO loops 63 and 64 store $\tilde{V}_n^{i1+\theta}$ of [1, Eq. (101)] in Y. The sign factor S in line 346 compensates for the minus sign in front of $V_{ni}^{\varphi\theta}$, in (70). The number of elements in the row vector 0 in [1, Eq. (101)] is IB because this row vector can be traced back to [1, Eq. (39b)]. DO loop 65 stores this row vector in Y. Nested DO loops 76 and 77 store $\tilde{V}_n^{i\theta}$ of [1, Eq. (101)] in Y. Line 364 compensates for the minus sign in front of $V_{ni}^{\varphi\theta}$, in (70). Nested DO loops 66 and 67 store $\tilde{I}_n^{i\theta}$ of [1, Eq. (101)] in Y. The offset JA in line 370 is mandated by the superscript ϕ in $V_{ni}^{r\phi}$, in [1, Eq. (103c)]. Line 376 accounts for the net effect of the minus sign in front of $V_{ni}^{r\phi}$, in [1, Eq. (103c)] and the minus sign in front of $V_{ni}^{r\phi}$, in (70).

Line 379 decomposes T_n into the product of a lower triangular matrix with an upper triangular matrix. Line 380 stores the solution \vec{X}_n^θ to [1, Eq. (65a)] in XX. The elements [1, Eq. (68a)] of \tilde{X}_n^θ are the I's and V's in [1, Eqs. (87)-(89)]. Lines 384-385 store ε_n in C1. Line 386 stores 4j in C2. If L1A(2) = 0, then it is evident (50a) and (50b) that L1A(1) = 0 so that no values of j are to be taken in (33) and (34). If L1A(2) > 0, line 392 prints (33) and (34). If L1A(4) = 0, then it is evident from (50c) and (50d) that L1A(3) = 0 so that no values of j are to be taken in (35) and (36). If L1A(4) > 0, line 398 prints (35) and (36). Line 403 prints (37) and (38). Line 409 prints (39) and (40).

If L2(1) = L2(2) = 0, then it is evident from (57a), (57b), (62a), and (62b) that L3(1) = L3(2) = 0 so that no values of j are to be taken in (41) - (44). If either L2(1) > 0 or L2(2) > 0, then line 417 prints (41)-(42). If L2(2) = 0, then it is evident from (57b), (62a) and (62b) that L3(1) = L3(2) = 0 so that no values of j are to be taken in (43) and (44). If L2(2) > 0, line 421 puts 2j in C1, lines 422 and 423 put $2\varepsilon_n$ in C2, and line 424 prints (43) and (44).

```
001 C
         LISTING OF THE MAIN PROGRAM
         THE SUBPROGRAMS YZA-BLOG-PLANE-DECOMP-SOLVE. AND PRNT ARE NEEDED
002 C
003 //PGM JOB (XXXX,XXXX,2.2), MAUTZ, JOE*, REGION=275K
004 // EXEC WATFIV
005//GO-SYSIN DD .
                   MAUTZ.TINE=5.PAGES=60
006 $J08
          COMPLEX C1.C2.C3.C4.C5.C6.XX(/9).YP(2209).ZP(2209).YM(2209)
0.07
          COMPLEX ZM(2209).R(240).T(6241).Y(79)
008
          DIMENSION XT(10).AT(10).X(48).A(48).THR(3).RA(43).ZA(43).R8(43)
009
          DIMENSION ZB(43).LIA(4).MIA(4).LIB(4).MIB(4).L2(2).M2A(2).M2B(2)
010
011
          DIMENSION L3(2).M3A(2).M3B(2).IPS(79)
          COMMON C1.C2.XX.JX
012
          READ(1.15) NT.NPHI
013
014
       15 FORMAT(213)
015
          WRITE(3.9) NT.NPHI
        9 FORMAT(* NT NPH[*/1X.13.15]
016
          READ(1-10)(XT(K)-K=1-NT)
017
019
          READ(1.10)(AT(K).K=1.NT)
019
       to FORMAT(SEL4.7)
0.50
          WRITE(3.11)(XT(K).K=1.NT)
          WRITE(3.12)(AT(K),K=1.NT)
021
022
       11 FORMAT(* XT*/(1X,5814.7))
       12 FORMAT(" AT"/(1X.5E14.7))
123
024
          READ(1.10)(X(K).K=1.NPHI)
          READ(1.10)(A(K).K=1.NPHI)
025
026
          WRITE(3.13)(X(K).K=L.NPHL)
027
          WRITE(3.14)(A(K),K=1.NPH[)
028
       13 FORMAT( * X*/(1X.5E14.7))
029
       14 FORMAT( A 1/(1X . 5E14.7))
          READ(1.16) NA.NB.NA.MB.MC.LA.LB.LC.MI.M2.8K.UR.ER.THR(1)
0.3 C
       16 FORMAT(1013/4E14.7)
031
           WRITE(3.17) NA.NB.MA.MB.MC.LA.LB.LC.M1.M2.BK.UR.ER.THR(1)
0.32
       17 FORMAT(* NA NB MA MB MC LA LB LC M1 M2*/1X.1013/7X.*BK*.12X.*UR*.
 033
          112X. 'ER ". 10X. 'THR(1) "/1X.4E14.7)
 034
          READ(1.18)(RA(1). [=1.NA)
 035
 036
           READ(1.18)(ZA(1).1=1.NA)
        18 FORMAT(10F8-4)
 037
 038
           WRITE(3.19)(RA(1). [=1.NA)
           WRITE (3.20) (ZA(I).I=I.NA)
 039
 040
        19 FORMAT( RA*/(1x.10F8.4))
        20 FORMAT( ZA / (1X . 10F8 . 4))
 041
           READ(1.18)(R8(1), I=1.N8)
 042
           READ(1.18)(Z8(I).I=1.NB)
 DA3
           WRITE(3.21)(RB(1).(=1.NB)
 044
        21 FORMAT(* RE*/(1X,10F8.4))
 045
           WRITE(3.22)(28(1).1=1.N8)
 046
        22 FORMAT( * ZB*/(1x.10F8.4))
 047
           C3=2.
 048
 049
           C4=4.*(0..1.)
           C5=2.+(0..1.)
 C50
 051
           C6=4.
           UE=SQRT (UR*ER)
 052
 053
           BB=BK+UE
           ET=SORT (UR/ER)
 054
 055
           ETI=1-/ET
           DO 23 (=1.NA
 056
 057
           RA([)=8K*RA([)
           7A(1)=RKOZA(1)
 058
 059
        23 CONTINUE
           00 24 I=1.NB
 060
```

Street Street

```
061
         RB([]=88+R8([)
         ZB(1)=88*Z8(1)
062
E60
      24 CONTINUE
         L1A(1)=MAXO(0.MA-1)
064
065
         L1A(2)=MA
066
         LIA(3)=MAXQ(0.NA-MA-MC-1)
067
         LIA(4)=NA-MA-MC-LA
068
         M1A(1)=0
069
         M1A(2)=NA-2
070
         MIA(3)=MA+MC-1
071
         MIA(4)=NA+MA+MC-3
072
         L18(1)=MAXO(0.MB-1)
073
         L18(2)=M8
074
         L18(3)=MAXO(0.NB-MB-MC-1)
075
         L18(4)=NB-NB-MC-L8
076
         M18(1)=0
077
         M18(2)=N8-2
078
         M18(3)=M8+MC-L
079
         MIB(4)=NB+MB+MC-3
080
         L2(1)=MC
         IF(MA.EQ.0) L2(1)=MC-1
186
082
         IF(LIA(4).EQ.0) L2(1)=L2(1)-L
083
         L2(2)=HC-1-LC
084
         M2A(1)=MAXO(0.MA-1)
085
         M2A(2)=NA-2+NA
086
         M28(1)=MAXO(0.M8-1)
097
         M28(2)=N8-2+M8
088
         L3(1)=MAX0(0.MC-2)
089
         L3(2)=L2(2)
090
         AM=(1)AEM
091
         M3A(2)=NA-2+MA
092
         8M=(1)8EM
093
         N38(2)=N8-2+M8
094
          JA=2*NA-3
095
          J8=2*N8-3
096
         IA=L1A(1)+L1A(2)+L1A(3)+L1A(4)
097
          IB=L18(1)+L18(2)+L18(3)+L18(4)
         N=[A+[B+L2(1)+L2(2)+L3(1)+L3(2)
098
099
         CALL YZA(M1.M2.NA.NPHI.NT.O.RA.ZA.X.A.XT.AT.YP.ZP)
100
         CALL YZA(M1.M2.NB,NPHI.NT.O.RB.ZB.X.A.XT.AT.YM,ZM)
101
         CALL PLANE(MI.M2.I.NA.NT.RA.ZA.XT.AT.THR.R)
102
         DO 82 J=1.NB
103
         R8(J)=R8(J)/UE
104
      82 CONTINUE
         AL#AL=SAL
105
106
          J82=J8+ J8
107
         M3=M1+1
108
         M4=M2+1
         DO 86 M=M3.M4
109
110
         IF (M-EQ.M3) GO TO 88
          J2=M-M3
111
          SÁL+SL=1L
112
         DO 89 J=1.JA2
113
         (IL+L)9Y=(L)9Y
114
         ZP(J)=ZP(J+J1)
115
      89 CONTINUE
116
117
         J1=J2+JB2
         00 90 J=1.J82
118
         (JC+C)MY=(L)MY
119
         ZM(J)=ZM(J+J1)
120
```

The state of the s

亡、

```
121
      90 CONTINUE
          J3=2*JA
122
123
         J1=J2+J3
         DO 91 J=1.J3
124
125
         R(J)=R(J+J1)
      91 CONTINUE
126
127
      88 JT=0
128
         DO 25 JJ=1.4
129
          JZ=LIA(JJ)
          (F(J2-EQ.0) GO TO 25
130
131
         AL+(LL)AIM=IL
132
         00 26 J=1.J2
         00 27 11=1.4
133
134
          13=L1A(11)
         IF(13.E0.0) GO TO 27
1.35
136
         (11)AIM+1L=EL
137
         11=J3+1
138
          12=J3+13
139
         DU 28 I=11.12
         J+1L=1L
140
141
         T(JT)=ZP(1)
      28 CONTINUE
142
143
      27 CONTINUE
          (F(18.EQ.0) GO TO 79
144
145
         DO 29 [=1.1B
         1+TL=7L
146
          T(JT)=0.
147
      29 CONTINUE
148
      79 00 30 II=1.2
149
150
          13=L2(11)
          IF(13.EQ.0) GO TO 30
151
152
          11)ASM+1L=EL
153
          11=J3+1
154
          12=J3+13
155
         00 31 1=11.12
156
          J+TL=TL
157
          T(JT)=ZP(I)
158
      31 CONTINUE
159
      30 CONTINUE
         DO 32 II=1.2
160
161
          (11)EJ=E1
          IF(13.EQ.0) GQ TQ 32
162
163
          (11)AEM+ (L=EL
164
          11=J3+1
165
          12=13+13
166
          DO 33 1=11.12
167
          JT=JT+1
168
          T(JT)=YP(1)
169
      33 CONTINUE
1/0
      32 CONTINUE
          AL+1L=1L
171
172
      26 CONTINUE
      25 CONTINUE
173
          DO 34 JJ=1.4
174
175
          J2=L18(JJ)
          1F(J2.EQ.0) GO TO 34
176
117
          J1=M18( JJ) +JB
          DO 35 J=1.J2
178
179
          [F(IA-EQ.0) GO TO 80
          DG 36 I=1.1A
180
```

710

```
I+TL=TL
181
182
          T(JY)=0.
183
       36 CONTINUE
       80 DO 37 [1=1.4
184
185
          13=L18(11)
186
          IF(13-EQ.0) GO TO 37
187
          (11)81M+1L=EL
148
          1+EL=11
189
          12=J3+13
190
          S1.11=1 8E DO
191
          JT=JT+1
192
          T(JT)=ET+ZN(1)
193
       38 CONTINUE
194
       37 CONTINUE
195
          00 39 11=1.2
196
          [3=L2(11)
          IF(13-EQ.0) GO TO 39
197
          J3=J1+M2B(11)
198
199
          11=J3+1
200
          12=J3+13
201
          DO 40 I=11.12
202
          I+TL=TL
203
          T(JT)=ET+ZM(I)
204
       40 CONTINUE
2 05
       39 CONTINUE
206
          DO 41 II=1.2
          13=L3(11)
207
208
          IF([3.EQ.0) GO TO 41
209
          (11)8EM+1L=EL
210
          11=J3+1
211
          12=J3+13
          DO 42 I=11.12
212
213
          1+1にニエト1
          (1)MY=(TL)T
214
215
       42 CONTINUE
216
       41 CONTINUE
217
          J1=J1+JB
218
       35 CONTINUE
       34 CONTINUE
219
220
          DO 43 JJ=1.2
221
          J2=L2(JJ)
          IF(J2.EQ.0) GO TO 43
222
223
          AL+(LL)ASM=A1L
224
          J18=M28(JJ)+J8
225
          DO 44 J-1.J2
226
          DO 45 II=1.4
227
          13=L1A(11)
228
          IF(13.EQ.0) GO TC 45
229
          (II)AIN+AIL=EL
          11=J3+L
230
231
          12=13+13
          DG 46 [=11.12
232
233
          1+1しゃすし
          T(JT)=ZP(I)
234
       46 CONTINUE
2.35
       45 CONTINUE
236
          00 47 [[=1.4
237
238
          13=L18(11)
          IF(13-E0-0) GO TO 47
239
240
          73=11 B+M1 B(11)
```

The second second

```
241
         1+26=11
242
         12=J3+13
         DO 48 I=I1.12
243
244
         1+1L=1L
245
         T(J)MS+T3=(TL)T
246
      48 CONTINUE
247
      47 CONTINUE
         00 49 11=1.2
248
245
          13=L2(11)
250
          IF(13-EQ.0) GO TO 49
          J3=J1 A+H2A(II)
251
252
          1+51=11
253
          12=J3+13
254
         J4=J18+ M28(II)
255
         00 50 [=[1.12
256
          J4=J4+1
257
          J1=J1+1
258
         T( JT)=ZP( 1 )+E T+ZN( J4)
259
      50 CONTINUE
260
      49 CONTINUE
261
         DO 51 11=1.2
262
          13=L3(11)
263
          IF(13.EQ.0) GO TO 51
264
         (11)AEM+AIL=EL
265
          1456=11
265
          12=13+13
267
          J4=J18+M3B(II)
          00 52 1=11.12
268
269
          J4=J4+1
270
          1+1L=1L
271
          (4L)MY+(1)9Y=(TL)T
272
      52 CONTINUE
273
       SI CONTINUE
274
          JIA=JIA+JA
275
          J18=J18+J8
276
      44 CONTINUE
277
       43 CONTINUE
278
          DG 53 JJ=1.2
279
          J2=L3(JJ)
          IF(J2.EQ.0) GO TO 53
280
155
          AL+(LL)AEM=AIL
282
          J18=M38(JJ)*J8
283
          00 54 J=1.J2
          DO 55 II=1.4
284
285
          13=L1A(11)
          IF(13.EQ.0) GO TO 55
286
287
          (II)AIM+AIL=EL
288
          11=J3+1
289
          12=J3+13
290
          DG 56 [=11.12
291
          J+1L=1L
292
          T(JT)=-YP(I)
       56 CONTINUE
293
294
       55 CONTINUE
295
          DO 57 [[=1.4
296
          13=L18(11)
          IF(13-EQ-0) GO TO 57
297
298
          J3=J18+H18(11)
          11=33+1
299
300
          12=13+13
```

F.

Company of the Marie Company of the Company of the

```
00 58 1=11.12
301
302
          1+1にニエレ
303
          (1)MY-=(TL)T
304
      58 CONTINUE
305
      57 CONTINUE
306
          00 59 11=1.2
307
          13=L2(11)
308
          IF(13-EQ-0) GO TO 59
309
          (11) ASM 4A 1L=EL
310
          11 = J3 + 1
311
          12=J3+13
312
          J4=J18+M28(II)
          00 60 [=[1.12
313
314
          J4=J4+1
315
          JT=JT+1
316
          T(JT)=-YP([]-YM(J4)
317
      60 CONTINUE
318
      59 CONTINUE
319
          00 61 11=1.2
320
          13=13(11)
32 i
          IF(13.EQ.0) GO TO 61
322
          (II)AEM+AIL=EL
323
          11=J3+1
324
          12=J3+13
325
          J4=J18+ M38(II)
326
          DO 62 I=11.12
327
          1+4L=4L
328
          J+TL=TL
329
          T(JT)=ZP(I)+ET1+ZM(J4)
330
      62 CONTINUE
331
      61 CONTINUE
332
          AL+AIL=AIL
          J18=J18+JB
333
334
       54 CONTINUE
335
       53 CONTINUE
336
          JY=0
337
          S=1 .
338
          DO 63 II=1.4
339
          I3=LIA(II)
340
          IF(13.EQ.0) GO TO 83
341
          J3=M1A(II)
342
          11=13+1
343
          12=13+13
344
          DO 64 [=11.12
345
          1+YL=YL
346
          Y(JY)=S#R(I)
       64 CONTINUE
347
348
       83 5=-5
345
       63 CUNTINUE
350
          IF(18-EQ.0) GO TO 81
351
          DO 65 1=1.18
352
          1+YL=YL
353
          Y ( JY )=0.
354
       65 CONTINUE
355
       81 DO 76 II=1.2
356
          13=L2(11)
357
          IF(13.EQ.0) GO TO 76
J58
          J3=M2A(11)
359
          11=33+1
360
          12=J3+13
```

```
361
         00 77 1=11.12
362
         JY=JY+1
363
         Y(JY) = R(I)
364
         IF(11.EQ.2) Y(JY)=-Y(JY)
365
      77 CONTINUE
366
      76 CONTINUE
367
         DO 66 [[=1.2
368
         13=13(11)
         IF(13-EQ-0) GO TO 66
369
370
         AL+(II)AEM=EL
371
         11=J3+1
372
         12=33+13
373
         DO 67 1=11.12
374
         1+YL=YL
375
         Y(JY)=R(I)
         IF(II.EQ.2) Y(JY)=-Y(JY)
376
377
      67 CONTINUE
378
      66 CONTINUE
379
         CALL DECOMP(N.IPS.T)
380
         CALL SOLVE(N. [PS.T.Y.XX]
381
         M5=M-1
392
         WRITE(3.96) M5
383
      96 FORMAT( * 0 * . 13 . * TH MODE ELECTRIC AND MAGNETIC CURRENTS * )
384
         C1 = C3
385
         IF (M5-EQ.0) C1=1.
386
         C2=C4
387
         J X=0
         J2=L1A(2)
388
389
         IF(J2.EQ.0) GO TO 84
390
         WRITE (3.68)
391
      68 FORMAT(*OBLECTRIC CURRENT ON FIRST PART OF OUTSIDE CONDUCTOR*)
392
         CALL PRNT (L1A(1).J2.1.1.RA)
393
      84 J2=L1A(4)
394
         IF(J2.EQ.0) GO TO 74
395
         WRITE(3,69)
      69 FORMAT( *OELECTRIC CURRENT ON SECOND PART OF OUTSIDE CONDUCTOR*)
396
397
         J3=MA+MC
398
         CALL PRNT (L1A(3), J2, J3, J3, RA)
399
      74 J2=L18(2)
         IF(J2-EQ-0) GO TO 85
400
401
         WRITE(3.70)
      70 FORMAT( OELECTRIC CURRENT ON FIRST PART OF INSIDE CONDUCTOR )
402
         CALL PRNT(L18(1).J2.1.1.R8)
403
404
      85 J2=L18(4)
405
         IF(J2.EQ.0) GO TO 75
406
         WRITE(3.71)
      71 FORMAT (*OELECTRIC CURRENT ON SECOND PART OF INSIDE CONDUCTOR*)
407
408
409
         CALL PRNT(L18(3), J2, J3, J3, R8)
410
      75 J1=L2(1)
411
          J2=L2(2)
412
          IF((J1+J2)-EQ-0) GD TD 86
         WRITE(3-72)
413
414
      72 FORMAT( OELECTRIC CURRENT IN APERTURE )
415
         1+11)ASM=EL
416
          J4=MA+1
417
         CALL PRNT(J1.J2.J3.J4.RA)
418
         IF(J2.EQ. 0) GO TO 86
         WRITE(3,73)
419
420
      73 FORMAT( OMAGNETIC CURRENT IN APERTURE )
```

AND THE PARTY OF T

1

The second second second second

```
421
         C1=C5
422
         C2=C6
423
         IF(M5-EQ.0) C2=2.
424
         CALL PRNT (L3(1).J2.J4.J4.RA)
425
      86 CONTINUE
         STOP
426
427
         END
   SOATA
     2 20
   -0.5773503E+00 0.5773503E+00
    0.1000000E+01 0.1000000E+01
   -0.9931286E+00-0.9639719E+00-0.9122344E+00-0.8391170E+00-0.7463319E+00
   -0.6360537E+00-0.5108670E+00-0.3737061E+00-0.2277859E+00-0.7652652E-01
    0.7652652E-01 0.2277859E+00 0.3737061E+00 0.5108670E+00 0.6360537E+00
    0.7463319E+00 0.8391170E+00 0.9122344E+00 0.9639719E+00 0.9931286E+00
    0.1761401E-01 0.4060143E-01 0.6267205E-01 0.8327674E-01 0.1019301E+00
    0.1181945E+00 0.1316886E+00 0.1420961E+00 0.1491730E+00 0.1527534E+00
    0.1527534E+00 0.1491730E+00 0.1420961E+00 0.1316886E+00 0.1181945E+00
   0.1019301E+00 9.8327674E-01 0.6267205E-01 0.4060143E-01 0.1761401E-01
    15 13 5 4 5 0 0 0 1 1
    0.2500000E+01 0.1000000E+01 0.200000E+01 0.0000000E+00
     0.0000 0.2588 0.5000 0.7071 0.8660 0.9659 0.9914
                                                            1.0000 0.9914
                                                                            0.9659
     0.8660 0.7071 0.5000 0.2588 0.0000
    -1.0000 -0.9659 -0.8660 -0.7071 -0.5000 -0.2588 -0.1305
                                                            0.0000 0.1305 0.2588
     0.5000 0.7071 0.8660 0.9659
                                    1.0000
     0.0000 0.2415 0.4830 0.7244 0.9659 0.9914 1.0000 0.9914
                                                                    0.9659
                                                                            0.7244
     0.4830 0.2415 0.0000
    -0.2588 -0.2588 -0.2588 -0.2588 -0.2588 -0.1305  0.0000  0.1305  0.2588  0.2588
     0.2588 0.2588 0.2588
   SSTOP
   /#
   //
   PRINTED OUTPUT
    NT NPHI
    2
   XT
   -0.5773503E+00 0.5773503E+00
   AT
    0.1000000E+01 0.1000000E+01
   -0.9931286E+00-0.9639719E+00-0.9122344E+00-0.8391170E+00-0.7463319E+00
   -0.6360537E+00-0.5108670E+00-0.3737061E+00-0.2277859E+00-0.7652652E-01
    0.7652652E-01 0.2277859E+00 0.3737061E+00 0.5108670E+00 0.6360537E+00
    0.7463319E+00 0.8391170E+00 0.9122344E+00 0.9639719E+00 0.9931286E+00
    0.1761401E-01 0.4060143E-01 0.6267208E-01 0.8327675E-01 0.1019301E+00
    0.1181945E+00 0.1316886E+00 0.1420961E+00 0.1491730E+00 0.1527534E+00
    0.1527534E+00 0.1491730E+00 0.1420961E+00 0.1316886E+00 0.1181945E+00
    0.10193015+00 0.83276755-01 0.62672085-01 0.40601435-01 0.17614015-01
    NA NB MA MB MC LA LB LC MI M2
    15 13 5 4 5 0 0 0 1 1
                      UR
         BK
                                    ER
                                                THR(1)
    0.2500000E+01 0.1000000E+01 0.2000000E+01 0.0000000E+00
     0.0000 0.2588 0.5000 0.7071 0.8660 0.9659 0.9914 1.0000 0.9914
                                                                            0.9659
            0.7071 0.5000 0.2588
                                    0.0000
    -1-0000 -0-9659 -0-8660 -0-7071 -0-5000 -0-2588 -0-1305 -0-0000 -0-1305 -0-2588
     0.5000 0.7071 0.8660 0.9659 1.0000
   RA
```

```
0.0000 0.2115 0.4830 0.7244 0.9659 0.9914 1.0000 0.9914 0.9659 0.7244
  U.4830 0.2415 0.0000
28
 -0.2588 -0.2588 -0.2588 -0.2588 -0.2588 -0.2588 -0.2588 -0.2588 0.2588
  0.2588 0.2588 0.2588
  ITH NODE ELECTRIC AND MAGNETIC CURRENTS
ELECTRIC CURRENT ON FIRST PART OF OUTSIDE CONDUCTOR
             INAG JT
                         MAG JT
 REAL JE
 0.6325E+00-0.8715E+00 0.1077E+01
 0.5889E+00-0.8223E-01 0.5946E+00
 0.2590E+00 0.7627E+00 0.8055E+00
-0.4205E+00 0.1188E+01 0.1261E+01
  REAL JP
            INAG JP
                        MAG JP
-0.6092E+00 0-1065E+01 0-1227E+01
-0.5386E+00 0.6909E+00 0.8760E+00
-0.3348E+00 0.4160E+00 0.5339E+00
-0.8079E+01 0.2966E+00 0.3074E+00
-0.5854E-01 0.5308E+00 0.5340E+00
ELECTRIC CURRENT ON SECOND PART OF OUTSIDE CONDUCTOR
 REAL JT
            INAG JT
                         MAG JT
-0.4426E+00-0-1791E+01 0-1844E+01
 0.4508E+00-0.1904E+01 0.1957E+01
 U.1105E+01-0.1607E+01 0.1950E+01
0.1478E+01-0.1261E+01 0.1943E+01
  REAL JP
            IMAG JP
                         MAG JP
-0.8943E+00-0.5344E+00 0.1042E+01
-0.2190E+00-0.1271E+01 0.1290E+01
0.52125+00-0.1483E+01 0.1572E+01
0.1119E+01-0.1365E+01 0.1765E+01
 0.1525E+01-0.1183E+01 0.1930E+01
ELECTRIC CURRENT ON FIRST PART OF INSIDE CONDUCTOR
  REAL JT
             IMAG JT
                         NAG JT
 0.1267E+01 0.3871E-01 0.1268E+01
 0.2608E+00 0.5877E-01 0.2673E+00
-0.7262E+00 0.1498E+00 0.7415E+00
 REAL JP
            IHAG JP
                        MAG JP
-0.1558E+01-0.3328E-01 0.1558E+01
-0.1116E+01-0.6796E-01 0.1118E+01
-0.7062E+00-0.7621E-01 0.7103E+00
-0.1/07E+00-0.3173E+C0 0.3603E+00
ELECTRIC CURRENT ON SECOND PART OF INSIDE CONDUCTOR
  REAL JT
             THAG JT
                        MAG JT
-0.7549E+00-0.2561E+00 0.8005E+00
 0.2513E+00-0.4657E-01 0.2556E+00
0.1280E+01 0.8836E-01 0.1283E+01
 REAL JP
            IMAG JP
                        MAG JP
```

The second of the second

0.6677E+00-0.1862E+00 0.6932E+00 0.7989E+00 0.7428E-02 0.7989E+00 0.1129E+01 0.6751E-01 0.1131E+01 0.1584E+01 0.1214E+00 0.1589E+01

ELECTRIC CURRENT IN APERTURE

REAL JT IMAG JT MAG JT
-0.1102E+01 0.6770E+00 0.1294E+01
-0.1261E+01 0.3286E+00 0.1303E+01
-0.1339E+01-0.4550E-01 0.1339E+01
-0.1305E+01-0.4478E+00 0.1380E+01
-0.1196E+01-0.9023E+00 0.1498E+01

REAL JP [MAG JP MAG JP -0.1580E+00 0.2658E+00 0.3092E+00 -0.2728E+00 0.1534E+00 0.3130E+00 -0.3750E+00 0.5005E-01 0.3783E+00 -0.5571E+00+0.5482E-01 0.5598E+00

MAGNETIC CURRENT IN APERTURE REAL JT IMAG JT MAG JT 0.1429E+00 0.7546E-01 0.1616E+00 0.1589E+00 0.1393E+00 0.2113E+00 0.1049E+00 0.1579E+00 0.1896E+00

REAL JP IMAG JP MAG JP Q.6528E+00 0.1541E+00 0.6708E+00 0.1559E+00 0.3855E+00 0.4158E+00 -0.1000E+00 0.4523E+00 0.4633E+00 -0.8395E+00 0.4811E+00 0.9675E+00

The state of the s

REFERENCES

- [1] J. R. Mautz and R. F. Harrington, "Electromagnetic Coupling to a Conducting Body of Revolution with a Homogeneous Material Region," Report RADC-TR-81-202, Rome Air Development Center, Griffiss Air Force Base, New York, 1981.
- [2] J. R. Mautz and R. F. Harrington, "An H-field Solution for a conducting Body of Revolution," Report RADC-TR-80-362, Rome Air Development Center, Griffiss Air Force Base, New York, November 1980.
- [3] J. R. Mautz and R. F. Harrington, "An Improved E-field Solution for a Conducting Body of Revolution," Report RADC-TR-80-194, Rome Air Development Center, Griffiss Air Force Base, New York, June 1980.
- [4] V. I. Krylov, Approximate Calculation of Integrals, translated by A. H. Stroud, Macmillan Co., New York, 1962.

JUANUANUANUANUANUANUANUANUANUANUA

MISSION Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence

is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

KANGANGANGANGANGA

